373 research outputs found

    When Census Geography Doesn't Work: Using Ancillary Information to Improve the Spatial Interpolation of Demographic Data

    Get PDF
    This paper introduces two new spatial interpolation techniques that utilize the network of road segments and the resulting nodes to allocate aggregated demographic characteristics from one type of geographic boundaries (i.e., the geographic hierarchy of the U.S. Census) to another (e.g. watersheds) under conditions of "spatial incongruity." Spatial incongruity arises when spatially aggregated data are available for one set of geographic areal units but not the areal units of primary interest. Spatial incongruity presents a major obstacle to the integration of social and natural science data and consequently places limitations on interdisciplinary research efforts. In the natural sciences the geographic units of analysis frequently are areas defined by land use, land cover, soil type, watershed boundaries, and a variety of other biophysical and geophysical features. Given that census geography and its concomitant demographic data seldom correspond exactly to these areas, combining the data from different disciplines and disparate units of analysis becomes a crucial function. The road segment length interpolation method presented in this paper improves upon areal weighting, the most common method used to allocate characteristics from one geographic system to another, in limited circumstances while the nodal count method represents a substantial improvement

    Specific heat of an S=1/2 Heisenberg ladder compound Cu2_2(C5_5H12_{12}N2_2)2_2Cl4_4 under magnetic fields

    Full text link
    Specific heat measurements down to 0.5 K have been performed on a single crystal sample of a spin-ladder like compound Cu2_{2}(C5_{5}H12_{12}N2_{2})2_{2}Cl4_{4} under magnetic fields up to 12 T. The temperature dependence of the observed data in a magnetic field below 6 T is well reproduced by numerical results calculated for the S=1/2 two-leg ladder with JrungJ_{\rm{rung}}/JlegJ_{\rm{leg}}=5. In the gapless region above 7 T (Hc1H_{\rm{c1}}), the agreement between experiment and calculation is good above about 2 K and a sharp and a round peak were observed below 2 K in a magnetic field around 10 T, but the numerical data show only a round peak, the magnitude of which is smaller than that of the observed one. The origin of the sharp peak and the difference between the experimental and numerical round peak are discussed.Comment: 14 pages, 11 figures, Submitted to PR

    Universal Correlations in Pion-less EFT with the Resonating Group Model: Three and Four Nucleons

    Full text link
    The Effective Field Theory "without pions" at next-to-leading order is used to analyze universal bound state and scattering properties of the 3- and 4-nucleon system. Results of a variety of phase shift equivalent nuclear potentials are presented for bound state properties of 3H and 4He, and for the singlet S-wave 3He-neutron scattering length a_0(3He-n). The calculations are performed with the Refined Resonating Group Method and include a full treatment of the Coulomb interaction and the leading-order 3-nucleon interaction. The results compare favorably with data and values from AV18(+UIX) model calculations. A new correlation between a_0(3He-n) and the 3H binding energy is found. Furthermore, we confirm at next-to-leading order the correlations, already found at leading-order, between the 3H binding energy and the 3H charge radius, and the Tjon line. With the 3H binding energy as input, we get predictions of the Effective Field Theory "without pions" at next-to-leading order for the root mean square charge radius of 3H of (1.6\pm 0.2) fm, for the 4He binding energy of (28\pm 2.5) MeV, and for Re(a_0(3He-n)) of (7.5\pm 0.6)fm. Including the Coulomb interaction, the splitting in binding energy between 3H and 3He is found to be (0.66\pm 0.03) MeV. The discrepancy to data of (0.10\mp 0.03) MeV is model independently attributed to higher order charge independence breaking interactions. We also demonstrate that different results for the same observable stem from higher order effects, and carefully assess that numerical uncertainties are negligible. Our results demonstrate the convergence and usefulness of the pion-less theory at next-to-leading order in the 4He channel. We conclude that no 4-nucleon interaction is needed to renormalize the theory at next-to-leading order in the 4-nucleon sector.Comment: 24 pages revtex4, including 8 figures as .eps files embedded with includegraphicx, leading-order results added, calculations include the LO three-nucleon interaction explicitly, comment on Wigner bound added, minor modification

    Time Since Stroke Onset, Quantitative Collateral Score, and Functional Outcome After Endovascular Treatment for Acute Ischemic Stroke

    Get PDF
    BACKGROUND AND OBJECTIVES: In patients with ischemic stroke undergoing endovascular treatment (EVT), time to treatment and collateral status are important prognostic factors and may be correlated. We aimed to assess the relation between time to CT angiography (CTA) and a quantitatively determined collateral score and to assess whether the collateral score modified the relation between time to recanalization and functional outcome. METHODS: We analyzed data from patients with acute ischemic stroke included in the Multicenter Randomized Controlled Trial of Endovascular Treatment for Acute Ischemic Stroke Registry between 2014 and 2017, who had a carotid terminus or M1 occlusion and were treated with EVT within 6.5 hours of symptom onset. A quantitative collateral score (qCS) was determined from baseline CTA using a validated automated image analysis algorithm. We also determined a 4-point visual collateral score (vCS). Multivariable regression models were used to assess the relations between time to imaging and the qCS and between the time to recanalization and functional outcome (90-day modified Rankin Scale score). An interaction term (time to recanalization × qCS) was entered in the latter model to test whether the qCS modifies this relation. Sensitivity analyses were performed using the vCS. RESULTS: We analyzed 1,813 patients. The median time from symptom onset to CTA was 91 minutes (interquartile range [IQR] 65–150 minutes), and the median qCS was 49% (IQR 25%–78%). Longer time to CTA was not associated with the log-transformed qCS (adjusted β per 30 minutes, 0.002, 95% CI −0.006 to 0.011). Both a higher qCS (adjusted common odds ratio [acOR] per 10% increase: 1.06, 95% CI 1.03–1.09) and shorter time to recanalization (acOR per 30 minutes: 1.17, 95% CI 1.13–1.22) were independently associated with a shift toward better functional outcome. The qCS did not modify the relation between time to recanalization and functional outcome (p for interaction: 0.28). Results from sensitivity analyses using the vCS were similar. DISCUSSION: In the first 6.5 hours of ischemic stroke caused by carotid terminus or M1 occlusion, the collateral status is unaffected by time to imaging, and the benefit of a shorter time to recanalization is independent of baseline collateral status

    Theory of Quantum Optical Control of Single Spin in a Quantum Dot

    Full text link
    We present a theory of quantum optical control of an electron spin in a single semiconductor quantum dot via spin-flip Raman transitions. We show how an arbitrary spin rotation may be achieved by virtual excitation of discrete or continuum trion states. The basic physics issues of the appropriate adiabatic optical pulses in a static magnetic field to perform the single qubit operation are addressed

    A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007

    Get PDF
    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters

    Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The Lambda(b) differential production cross section and the cross section ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7 TeV using data collected by the CMS experiment at the LHC. The measurements are based on Lambda(b) decays reconstructed in the exclusive final state J/Psi Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and Lambda to proton pion, using a data sample corresponding to an integrated luminosity of 1.9 inverse femtobarns. The product of the cross section times the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls faster than that of b mesons. The measured value of the cross section times the branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06 +/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are statistical and systematic, respectively.Comment: Submitted to Physics Letters

    Search for new physics in events with opposite-sign leptons, jets, and missing transverse energy in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search is presented for physics beyond the standard model (BSM) in final states with a pair of opposite-sign isolated leptons accompanied by jets and missing transverse energy. The search uses LHC data recorded at a center-of-mass energy sqrt(s) = 7 TeV with the CMS detector, corresponding to an integrated luminosity of approximately 5 inverse femtobarns. Two complementary search strategies are employed. The first probes models with a specific dilepton production mechanism that leads to a characteristic kinematic edge in the dilepton mass distribution. The second strategy probes models of dilepton production with heavy, colored objects that decay to final states including invisible particles, leading to very large hadronic activity and missing transverse energy. No evidence for an event yield in excess of the standard model expectations is found. Upper limits on the BSM contributions to the signal regions are deduced from the results, which are used to exclude a region of the parameter space of the constrained minimal supersymmetric extension of the standard model. Additional information related to detector efficiencies and response is provided to allow testing specific models of BSM physics not considered in this paper.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore