51 research outputs found
ILLUMINATING THE DARKEST GAMMA-RAY BURSTS WITH RADIO OBSERVATIONS
We present X-ray, optical, near-infrared (IR), and radio observations of gamma-ray bursts (GRBs) 110709B and 111215A, as well as optical and near-IR observations of their host galaxies. The combination of X-ray detections and deep optical/near-IR limits establish both bursts as "dark." Sub-arcsecond positions enabled by radio detections lead to robust host galaxy associations, with optical detections that indicate z ≾ 4 (110709B) and z ≈ 1.8-2.9 (111215A). We therefore conclude that both bursts are dark due to substantial rest-frame extinction. Using the radio and X-ray data for each burst we find that GRB 110709B requires A_V^(host) ≳ 5.3 mag and GRB 111215A requires A_V^(host) ≳ 8.5 mag (assuming z = 2). These are among the largest extinction values inferred for dark bursts to date. The two bursts also exhibit large neutral hydrogen column densities of N H, int ≳ 10^(22) cm^(–2) (z = 2) as inferred from their X-ray spectra, in agreement with the trend for dark GRBs. Moreover, the inferred values are in agreement with the Galactic A_V -N_H relation, unlike the bulk of the GRB population. Finally, we find that for both bursts the afterglow emission is best explained by a collimated outflow with a total beaming-corrected energy of E_γ + E_K ≈ (7-9) × 10^(51) erg (z = 2) expanding into a wind medium with a high density, Ṁ ≈ (6-20) x 10^(-5) M_☉ yr^(–1) (n ≈ 100-350 cm^(–3) at ≈ 10^(17) cm). While the energy release is typical of long GRBs, the inferred density may be indicative of larger mass-loss rates for GRB progenitors in dusty (and hence metal rich) environments. This study establishes the critical role of radio observations in demonstrating the origin and properties of dark GRBs. Observations with the JVLA and ALMA will provide a sample with sub-arcsecond positions and robust host associations that will help to shed light on obscured star formation and the role of metallicity in GRB progenitors
GRB 091029: At the limit of the fireball scenario
Using high-quality, broad-band afterglow data for GRB 091029, we test the
validity of the forward-shock model for gamma-ray burst afterglows. We used
multi-wavelength (NIR to X-ray) follow-up observations obtained with the GROND,
BOOTES-3/YA and Stardome optical ground-based telescopes, and the UVOT and the
XRT onboard the Swift satellite. To explain the almost totally decoupled light
curves in the X-ray and optical/NIR domains, a two-component outflow is
proposed. Several models are tested, including continuous energy injection,
components with different electron energy indices and components in two
different stages of spectral evolution. Only the last model can explain both
the decoupled light curves with asynchronous peaks and the peculiar SED
evolution. However, this model has so many unknown free parameters that we are
unable to reliably confirm or disprove its validity, making the afterglow of
GRB 091029 difficult to explain in the framework of the simplest fireball
model.Comment: Accepted to A&
A deep search for the host galaxies of GRBs with no detected optical afterglow
Gamma-Ray Bursts can provide information about star formation at high
redshifts. Even in the absence of a optical/near-infrared/radio afterglow, the
high detection rate of X-ray afterglows by swift/XRT and its localization
precision of 2-3 arcsec facilitates the identification and study of GRB host
galaxies. We focus on the search for the host galaxies of a sample of 17 bursts
with XRT error circles but no detected long-wavelength afterglow. Three of
these events can also be classified as truly dark bursts: the observed upper
limit on the optical flux of the afterglow was less than expected based on the
X-ray flux. Our study is based on deep R and K-band observations performed with
ESO/VLT instruments, supported by GROND and NEWFIRM. To be conservative, we
searched for host galaxies in an area with a radius twice the 90% swift/XRT
error circle. For 15 of the 17 bursts we find at least one galaxy inside the
doubled XRT error circle. In seven cases we discover extremely red objects in
the error circles. The most remarkable case is the host of GRB 080207 which as
a colour of R-K~4.7 mag (AB), one of the reddest galaxies ever associated with
a GRB. As a by-product of our study we identify the optical afterglow of GRB
070517A. Optically dim afterglows result from cosmological Lyman drop out and
dust extinction, but the former process is only equired for a minority of cases
(<1/3). Extinction by dust in the host galaxies might explain all other events.
Thereby, a seemingly non-negligible fraction of these hosts are globally
dust-enshrouded, extremely red galaxies. This suggests that bursts with
optically dim afterglows trace a subpopulation of massive starburst galaxies,
which are markedly different from the main body of the GRB host galaxy
population, namely the blue, subluminous, compact galaxies.Comment: 29 pages, 31 figures, accepted for publication in A&
A structured review of long-term care demand modelling
Long-term care (LTC) represents a significant and substantial proportion of healthcare spends across the globe. Its main aim is to assist individuals suffering with more or more chronic illnesses, disabilities or cognitive impairments, to carry out activities associated with daily living. Shifts in several economic, demographic and social factors have raised concerns surrounding the sustainability of current systems of LTC. Substantial effort has been put into modelling the LTC demand process itself so as to increase understanding of the factors driving demand for LTC and its related services. Furthermore, such modeling efforts have also been used to plan the operation and future composition of the LTC system itself. The main aim of this paper is to provide a structured review of the literature surrounding LTC demand modeling and any such industrial application, whilst highlighting any potential direction for future researchers
GRB 081007 AND GRB 090424: THE SURROUNDING MEDIUM, OUTFLOWS, AND SUPERNOVAE
We discuss the results of the analysis of multi-wavelength data for the afterglows of GRB 081007 and GRB 09042We discuss the results of the analysis of multi-wavelength data for the afterglows of GRB 081007 and GRB 090424, two bursts detected by Swift. One of them, GRB 081007, also shows a spectroscopically confirmed supernova, SN 2008hw, which resembles SN 1998bw in its absorption features, while the maximum magnitude may be fainter, up to 0.7 mag, than observed in SN 1998bw. Bright optical flashes have been detected in both events, which allows us to derive solid constraints on the circumburst-matter density profile. This is particularly interesting in the case of GRB081007, whose afterglow is found to be propagating into a constant-density medium, yielding yet another example of a gamma-ray burst (GRB) clearly associated with a massive star progenitor which did not sculpt the surroundings with its stellar wind. There is no supernova component detected in the afterglow of GRB090424, likely because of the brightness of the host galaxy, comparable to the Milky Way. We show that the afterglow data are consistent with the presence of both forward- and reverse-shock emission powered by relativistic outflows expanding into the interstellar medium. The absence of optical peaks due to the forward shock strongly suggests that the reverse-shock regions should be mildly magnetized. The initial Lorentz factor of outflow of GRB081007 is estimated to be ?? ~ 200, while for GRB090424 a lower limit of ?? > 170 is derived. We also discuss the prompt emission of GRB081007, which consists of just a single pulse. We argue that neither the external forward-shock model nor the shock-breakout model can account for the prompt emission data and suggest that the single-pulse-like prompt emission may be due to magnetic energy dissipation of a Poynting-flux-dominated outflow or to a dissipative photosphere
Supplement: "Localization and broadband follow-up of the gravitational-wave transient GW150914" (2016, ApJL, 826, L13)
This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands
Anti-tumour necrosis factor discontinuation in inflammatory bowel disease patients in remission: study protocol of a prospective, multicentre, randomized clinical trial
Background:
Patients with inflammatory bowel disease who achieve remission with anti-tumour necrosis factor (anti-TNF) drugs may have treatment withdrawn due to safety concerns and cost considerations, but there is a lack of prospective, controlled data investigating this strategy. The primary study aim is to compare the rates of clinical remission at 1?year in patients who discontinue anti-TNF treatment versus those who continue treatment.
Methods:
This is an ongoing, prospective, double-blind, multicentre, randomized, placebo-controlled study in patients with Crohn?s disease or ulcerative colitis who have achieved clinical remission for ?6?months with an anti-TNF treatment and an immunosuppressant. Patients are being randomized 1:1 to discontinue anti-TNF therapy or continue therapy. Randomization stratifies patients by the type of inflammatory bowel disease and drug (infliximab versus adalimumab) at study inclusion. The primary endpoint of the study is sustained clinical remission at 1?year. Other endpoints include endoscopic and radiological activity, patient-reported outcomes (quality of life, work productivity), safety and predictive factors for relapse. The required sample size is 194 patients. In addition to the main analysis (discontinuation versus continuation), subanalyses will include stratification by type of inflammatory bowel disease, phenotype and previous treatment. Biological samples will be obtained to identify factors predictive of relapse after treatment withdrawal.
Results:
Enrolment began in 2016, and the study is expected to end in 2020.
Conclusions:
This study will contribute prospective, controlled data on outcomes and predictors of relapse in patients with inflammatory bowel disease after withdrawal of anti-TNF agents following achievement of clinical remission.
Clinical trial reference number:
EudraCT 2015-001410-1
A γ-ray burst at a redshift of z ≈ 8.2
Long-duration γ-ray bursts (GRBs) are thought to result from the explosions of certain massive stars, and some are bright enough that they should be observable out to redshifts of z > 20 using current technology. Hitherto, the highest redshift measured for any object was z = 6.96, for a Lyman-α emitting galaxy. Here we report that GRB 090423 lies at a redshift of z ≈ 8.2, implying that massive stars were being produced and dying as GRBs ~630 Myr after the Big Bang. The burst also pinpoints the location
of its host galaxy
Localization and broadband follow-up of the gravitational-wave transient GW150914
A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams
GRB 120422A/SN 2012bz: Bridging the gap between low- and high-luminosity gamma-ray bursts
Context. At low redshift, a handful of gamma-ray bursts (GRBs) have been discovered with luminosities that are substantially lower (Liso ≲ 1048.5 erg s-1) than the average of more distant ones (Liso ≳ 1049.5 erg s-1). It has been suggested that the properties of several low-luminosity (low-L) GRBs are due to shock break-out, as opposed to the emission from ultrarelativistic jets. This has led to much debate about how the populations are connected.
Aims. The burst at redshift z = 0.283 from 2012 April 22 is one of the very few examples of intermediate-L GRBs with a γ-ray luminosity of Liso ~ 1049.6−49.9 erg s-1 that have been detected up to now. With the robust detection of its accompanying supernova SN 2012bz, it has the potential to answer important questions on the origin of low- and high-L GRBs and the GRB-SN connection.
Methods. We carried out a spectroscopy campaign using medium- and low-resolution spectrographs with 6–10-m class telescopes, which covered a time span of 37.3 days, and a multi-wavelength imaging campaign, which ranged from radio to X-ray energies over a duration of ~270 days. Furthermore, we used a tuneable filter that is centred at Hα to map star-formation in the host and the surrounding galaxies. We used these data to extract and model the properties of different radiation components and fitted the spectral energy distribution to extract the properties of the host galaxy.
Results. Modelling the light curve and spectral energy distribution from the radio to the X-rays revealed that the blast wave expanded with an initial Lorentz factor of Γ0 ~ 50, which is a low value in comparison to high-L GRBs, and that the afterglow had an exceptionally low peak luminosity density of ≲2 × 1030 erg s-1 Hz-1 in the sub-mm. Because of the weak afterglow component, we were able to recover the signature of a shock break-out in an event that was not a genuine low-L GRB for the first time. At 1.4 hr after the burst, the stellar envelope had a blackbody temperature of kBT ~ 16 eV and a radius of ~7 × 1013 cm (both in the observer frame). The accompanying SN 2012bz reached a peak luminosity of MV = −19.7 mag, which is 0.3 mag more luminous than SN 1998bw. The synthesised nickel mass of 0.58 M⊙, ejecta mass of 5.87 M⊙, and kinetic energy of 4.10 × 1052 erg were among the highest for GRB-SNe, which makes it the most luminous spectroscopically confirmed SN to date. Nebular emission lines at the GRB location were visible, which extend from the galaxy nucleus to the explosion site. The host and the explosion site had close-to-solar metallicity. The burst occurred in an isolated star-forming region with an SFR that is 1/10 of that in the galaxy’s nucleus.
Conclusions. While the prompt γ-ray emission points to a high-L GRB, the weak afterglow and the low Γ0 were very atypical for such a burst. Moreover, the detection of the shock break-out signature is a new quality for high-L GRBs. So far, shock break-outs were exclusively detected for low-L GRBs, while GRB 120422A had an intermediate Liso of ~1049.6−49.9 erg s-1. Therefore, we conclude that GRB 120422A was a transition object between low- and high-L GRBs, which supports the failed-jet model that connects low-L GRBs that are driven by shock break-outs and high-L GRBs that are powered by ultra-relativistic jets
- …