10 research outputs found

    Thunderstorm Observation by Radar (ThOR): An Algorithm to Develop a Climatology of Thunderstorms

    Get PDF
    The Thunderstorm Observation by Radar (ThOR) algorithm is an objective and tunable Lagrangian approach to cataloging thunderstorms. ThOR uses observations from multiple sensors (principally multisite surveillance radar data and cloud-to-ground lightning) along with established techniques for fusing multisite radar data and identifying spatially coherent regions of radar reflectivity (clusters) that are subsequently tracked using a new tracking scheme. The main innovation of the tracking algorithm is that, by operating offline, the full data record is available, not just previous cluster positions, so all possible combinations of object sequences can be developed using all observed object positions. In contrast to Eulerian methods reliant on thunder reports, ThOR is capable of cataloging nearly every thunderstorm that occurs over regional-scale and continental United States (CONUS)-scale domains, thereby enabling analysis of internal properties and trends of thunderstorms. ThOR is verified against 166 manually analyzed cluster tracks and is also verified using descriptive statistics applied to a large (~35 000 tracks) sample. Verification also relied on a benchmark tracking algorithm that provides context for the verification statistics. ThOR tracks are shown to match the manual tracks slightly better than the benchmark tracks. Moreover, the descriptive statistics of the ThOR tracks are nearly identical to those of the manual tracks, suggesting good agreement. When the descriptive statistics were applied to the ~35 000-track dataset, ThOR tracking produces longer (statistically significant), straighter, and more coherent tracks than those of the benchmark algorithm. Qualitative assessment of ThOR performance is enabled through application to a multiday thunderstorm event and comparison to the behavior of the Storm Cell Identification and Tracking (SCIT) algorithm

    Thunderstorm Observation by Radar (ThOR): An Algorithm to Develop a Climatology of Thunderstorms

    Get PDF
    The Thunderstorm Observation by Radar (ThOR) algorithm is an objective and tunable Lagrangian approach to cataloging thunderstorms. ThOR uses observations from multiple sensors (principally multisite surveillance radar data and cloud-to-ground lightning) along with established techniques for fusing multisite radar data and identifying spatially coherent regions of radar reflectivity (clusters) that are subsequently tracked using a new tracking scheme. The main innovation of the tracking algorithm is that, by operating offline, the full data record is available, not just previous cluster positions, so all possible combinations of object sequences can be developed using all observed object positions. In contrast to Eulerian methods reliant on thunder reports, ThOR is capable of cataloging nearly every thunderstorm that occurs over regional-scale and continental United States (CONUS)-scale domains, thereby enabling analysis of internal properties and trends of thunderstorms. ThOR is verified against 166 manually analyzed cluster tracks and is also verified using descriptive statistics applied to a large (~35 000 tracks) sample. Verification also relied on a benchmark tracking algorithm that provides context for the verification statistics. ThOR tracks are shown to match the manual tracks slightly better than the benchmark tracks. Moreover, the descriptive statistics of the ThOR tracks are nearly identical to those of the manual tracks, suggesting good agreement. When the descriptive statistics were applied to the ~35 000-track dataset, ThOR tracking produces longer (statistically significant), straighter, and more coherent tracks than those of the benchmark algorithm. Qualitative assessment of ThOR performance is enabled through application to a multiday thunderstorm event and comparison to the behavior of the Storm Cell Identification and Tracking (SCIT) algorithm

    Literatur

    No full text

    First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data

    No full text
    International audienceWe report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the first Advanced LIGO observing run. This search investigates the low frequency range of Advanced LIGO data, between 20 and 100 Hz, much of which was not explored in initial LIGO. The search was made possible by the computing power provided by the volunteers of the Einstein@Home project. We find no significant signal candidate and set the most stringent upper limits to date on the amplitude of gravitational wave signals from the target population, corresponding to a sensitivity depth of 48.7  [1/Hz]. At the frequency of best strain sensitivity, near 100 Hz, we set 90% confidence upper limits of 1.8×10-25. At the low end of our frequency range, 20 Hz, we achieve upper limits of 3.9×10-24. At 55 Hz we can exclude sources with ellipticities greater than 10-5 within 100 pc of Earth with fiducial value of the principal moment of inertia of 1038  kg m2

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    No full text
    International audienceSpinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signal-to-noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO

    No full text
    International audienceDuring their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves (GWs) from merging intermediate mass black hole binaries (IMBHBs). The combined results from two independent search techniques were used in this study: the first employs a matched-filter algorithm that uses a bank of filters covering the GW signal parameter space, while the second is a generic search for GW transients (bursts). No GWs from IMBHBs were detected; therefore, we constrain the rate of several classes of IMBHB mergers. The most stringent limit is obtained for black holes of individual mass 100  M⊙, with spins aligned with the binary orbital angular momentum. For such systems, the merger rate is constrained to be less than 0.93  Gpc−3 yr−1 in comoving units at the 90% confidence level, an improvement of nearly 2 orders of magnitude over previous upper limits

    Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo

    Get PDF
    Advanced LIGO and Advanced Virgo are monitoring the sky and collecting gravitational-wave strain data with sufficient sensitivity to detect signals routinely. In this paper we describe the data recorded by these instruments during their first and second observing runs. The main data products are gravitational-wave strain time series sampled at 16384 Hz. The datasets that include this strain measurement can be freely accessed through the Gravitational Wave Open Science Center at http://gw-openscience.org, together with data-quality information essential for the analysis of LIGO and Virgo data, documentation, tutorials, and supporting software
    corecore