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ABSTRACT

The Thunderstorm Observation by Radar (ThOR) algorithm is an objective and tunable Lagrangian ap-

proach to cataloging thunderstorms. ThOR uses observations from multiple sensors (principally multisite

surveillance radar data and cloud-to-ground lightning) along with established techniques for fusing multisite

radar data and identifying spatially coherent regions of radar reflectivity (clusters) that are subsequently

tracked using a new tracking scheme. The main innovation of the tracking algorithm is that, by operating

offline, the full data record is available, not just previous cluster positions, so all possible combinations of

object sequences can be developed using all observed object positions. In contrast to Eulerianmethods reliant

on thunder reports, ThOR is capable of cataloging nearly every thunderstorm that occurs over regional-scale

and continental United States (CONUS)-scale domains, thereby enabling analysis of internal properties and

trends of thunderstorms.

ThOR is verified against 166 manually analyzed cluster tracks and is also verified using descriptive statistics

applied to a large (;35 000 tracks) sample. Verification also relied on a benchmark tracking algorithm that

provides context for the verification statistics. ThOR tracks are shown to match the manual tracks slightly

better than the benchmark tracks. Moreover, the descriptive statistics of the ThOR tracks are nearly identical

to those of the manual tracks, suggesting good agreement. When the descriptive statistics were applied to the

;35 000-track dataset, ThOR tracking produces longer (statistically significant), straighter, and more co-

herent tracks than those of the benchmark algorithm. Qualitative assessment of ThOR performance is en-

abled through application to amultiday thunderstorm event and comparison to the behavior of the StormCell

Identification and Tracking (SCIT) algorithm.

1. Introduction

The thunderstorm is a phenomenon in the physical

climate system that can produce a severe impact on

humans. Between 1995 and 2013, the hazards produced

by thunderstorms (tornado, lightning, hail, flash flood-

ing, and thunderstorm winds) were responsible for 4037

deaths, 40 371 injuries, and $99.9 billion (2013 dollars)

in damage (NOAA 2013). It is therefore essential to

understand the spatiotemporal variability of thunder-

storms and expose spatiotemporal patterns that are a

consequence of climate variability and climate change.

In turn, trends in such patterns could serve as barom-

eters for climate change. A robust thunderstorm cli-

matology requires a method for identifying and

tracking thunderstorms that uses data with a fidelity

that is capable of resolving thunderstorm structure and

life cycle. The complexity of identifying and tracking

thunderstorms and the size of the dataset required to

undertake this task have meant that a true thunder-

storm climatology for the United States has not yet

been produced.

To properly frame the approach required to fill this

data void, it is necessary to establish a rigorous definition

for a thunderstorm. The Glossary of Meteorology

(American Meteorological Society 2013) defines a

thunderstorm as a mesometeorological ‘‘disturbed state
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of the atmosphere’’ produced by a cumulonimbus cloud

and is always accompanied by lightning and thunder.

This definition departs somewhat from the definitions of

Houze (1993), Cotton and Anthes (1989), and others,

who state that a thunderstorm is not produced by a cu-

mulonimbus cloud but is the cumulonimbus cloud. We

assert here that the most robust definition of a thun-

derstorm is deep moist convection-producing thunder.

In this definition, the thunderstorm is treated as a pro-

cess (deep moist convection) and the cumulonimbus

cloud is treated as the most direct manifestation of this

process. Unfortunately, it is nearly impossible to extend

this definition to the development of a thunderstorm

climatology, since conventional observing systems are

only capable of resolving the manifestations of thun-

derstorms, not the process that defines them. Therefore,

in this work, the definition of a thunderstorm as a

thundering cumulonimbus cloud will be adopted. Ac-

cording to this definition, a robust climatology of

thunderstorms cannot be based solely on Eulerian ob-

servations of thunderstorm products (e.g., lightning,

thunderstorm, precipitation) but requires a Lagrangian

approach that embraces the principle that a thunder-

storm is an entity with a spatial scale, motion, and

life cycle.

Previous ‘‘thunderstorm’’ climatologies have been

predominantly developed using Eulerian approaches.

These studies were directed toward establishingwhether a

given location in the study region experienced a thun-

derstorm, termed a thunderstorm event. Such climatol-

ogies (e.g., Alexander 1915, 1935; Kuo and Orville 1973;

Wallace 1975; Reap and Foster 1979; Court andGriffiths

1981; Falconer 1984; Changnon 1985; Easterling and

Robinson 1985; Michaels et al. 1987; Changnon 1988a,b)

have served as the benchmarks for the spatiotemporal

distributions of thunderstorms. However, to develop a

robust thunderstorm climatology, it is necessary to

adopt a Lagrangian-based methodology that is capable

of cataloging every thunderstorm that occurs over the

spatial domain and period of record. With these data it

will be possible to catalog internal properties of in-

dividual thunderstorms and to examine thunderstorm

characteristics and trends (e.g., how has the per-

thunderstorm lightning productivity changed in the

United States over the last decade?).

Input data for a Lagrangian approach to developing a

thunderstorm climatology must satisfy the following

requirements: the spatial granularity must be capable of

resolving thunderstorm structure, the temporal granu-

larity must be capable of resolving thunderstorm evo-

lution, and lightning and/or thunder must be identified.

Additionally, to answer some of the most pressing

questions regarding thunderstorm distribution and

behavior, the geographic domain must be large enough

to minimize the influence of local or regional effects and

the period of record must be long enough to resolve

diurnal and seasonal cycles.

In general, radar data are ideally suited for the de-

velopment of thunderstorm climatologies because

1) they are characterized by spatiotemporal granularity

capable of resolving thunderstorm structure and evolu-

tion, 2) even a single radar can collect data over a size-

able geographic footprint [O(105 km2)], and 3) the

retrieved volumetric dataset offers a more complete

perspective of the thunderstorm structure than the 2D

perspective offered by satellite data.

To minimize attenuation, surveillance radars oper-

ate at frequencies that produce negligible scattering

from cloud particles. As such, surveillance radars do

not detect the cumulonimbus cloud that defines the

thunderstorm but instead detect precipitation-sized

hydrometeors produced by the cloud. Cumulonimbus

clouds that fail to produce precipitation somewhere

within the cloud column are assumed too rare to chal-

lenge the assertion that radar data can be used to

accurately identify thunderstorms.

Since radar data cannot detect lightning, approaches

that rely solely on radar data cannot reveal whether a

cumulonimbus cloud is actually producing thunder.Reap

and Foster (1979) demonstrate that high-reflectivity ra-

dar returns are usually associated with thunder and that

low-reflectivity returns usually are not. However, the

most robust method for identifying thundering cumulo-

nimbus clouds is to synthesize radar-derived cumulo-

nimbus cloud identifications with observations of

lightning or thunder.

Like any observational network, there are limitations

to using radar data; principally, radar horizon, beam

spreading, attenuation (particularly for higher-frequency

radars), and anomalous returns (ground clutter, multi-

trip echoes, etc.). Moreover, the amount of data that

compose the volumetric datasets places a significant

burden on computational resources tasked with data

processing and storage.

Previous radar-based approaches to developing

thunderstorm climatologies (e.g., Wiggert et al. 1981;

López et al. 1984; MacKeen et al. 1999; Potts et al. 2000;

May and Ballinger 2007; Clements and Orville 2008;

Mohee and Miller 2010; Mosier et al. 2011; Davini et al.

2012; Seroka et al. 2012; Goudenhoofdt and Delobbe

2013) capitalize on themany benefits of using radar data.

Moreover, each of these studies relies on an objective

algorithm for thunderstorm identification that, in con-

trast to manual identification strategies, is repeatable

and tunable. However, none of these methods operates

on multiple radars covering a large region and includes
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lightning. Mohee and Miller (2010) and Davini et al.

(2012) utilize multiple radars over a regional footprint

(NorthDakota and northwestern Italy, respectively) but

neither integrates lightning into their thunderstorm

identification logic. Clements andOrville (2008),Mosier

et al. (2011), and Seroka et al. (2012) utilize lightning for

thunderstorm identification but use only a single radar

for their analysis.

The Thunderstorm Observation by Radar (ThOR)

algorithm presented herein similarly relies on radar data

in its objective and tunable Lagrangian approach to

cataloging thunderstorms. ThOR uses observations

from multiple sensors (principally multisite surveillance

radar data and cloud-to-ground lightning) and estab-

lished techniques for fusing multisite radar data and

identifying spatially coherent regions of radar reflec-

tivity (clusters) that are subsequently tracked using a

new and innovative tracking scheme. The tracking

scheme developed for ThOR is designed to work on

archived data and is therefore not constrained by the

limitation of real-time tracking that the future state of

the thunderstorm is unknown. The design of the track-

ing component has been guided by best practices of

object tracking and has undergone rigorous quantitative

verification.

The algorithm is described in section 2 and is orga-

nized as follows: overview (section 2a); event selection,

data preprocessing, and quality control (section 2b);

radar data merging and composite reflectivity (section

2c); stratiform precipitation attenuation (section 2d);

reflectivity cluster identification (section 2e); cluster

tracking (section 2f); and lightning association (section

2g). Section 3 presents results from the application of

ThOR to a multiday event in April 2007. The summary

is in section 4.

2. Algorithm description

a. Overview

ThOR involves five principal steps (Fig. 1): 1) merge

radar data from multiple radars to a single volume on a

common Cartesian grid, 2) attenuate stratiform pre-

cipitation to improve thunderstorm detection, 3) identify

spatially coherent regions in radar reflectivity (i.e.,

clusters), 4) track clusters to develop candidate thun-

derstorms, and 5) associate cloud-to-ground (CG)

lightning to candidate thunderstorms in order to classify

tracked clusters as thunderstorms. Input datasets are

level II radar volumes for individual WSR-88D, CG

flashes from Vaisala’s National Lightning Detection

Network (NLDN), and the North American Regional

Reanalysis (NARR, Mesinger et al. 2006). The retrieval

and processing of radar data presents the largest chal-

lenge to the efficient execution of ThOR. Thus, to

minimize the amount of radar data, a procedure for

identifying ‘‘events’’ likely to contain thunderstorms has

been implemented outside of ThOR but is discussed

in the following subsection in the interest of com-

pleteness. Moreover, since input data for ThOR are

expected to be quality controlled and formatted

appropriately, the preprocessing of data is also

discussed.

The omission of in-cloud (IC) lightning from the

lightning data used in ThOR will invariably result in an

underestimation of the number of thunderstorms iden-

tified. The results of MacGorman et al. (2011) offer

guidance for estimating the potential impact of this

omission. Using total flashes detected by regional VHF

FIG. 1. Data and process flowchart for ThOR. Raw data sources

appear as cylinders to the left, processed data are indicated with

rounded rectangles, modules within theWDSS-II suite of tools are

indicated with dark gray ellipses, and modules developed by the

authors specifically for ThOR are indicated with light gray ellipses.
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lightning mapping systems along with CG flashes de-

tected by the NLDN, MacGorman et al. found that

88%–93% of the Oklahoma thunderstorms they studied

produced at least one CG flash within one hour of the

first IC flash. They found a similar ratio for thunder-

storms analyzed in North Texas and a slightly lower

ratio (80%) for thunderstorms analyzed over the high

plains of Colorado, Kansas, and Nebraska. These ratios

probably indicate the upper bound of the fraction of

thunderstorms that can be accurately detected when IC

flashes are not used in thunderstorm identification.

MacGorman et al. also found that the elapsed time to

the first CG for 75% of the thunderstorms analyzed in

Oklahoma, North Texas, and the high plains was 12, 23,

and 44min, respectively. Based on preliminary results, it

is likely that the median thunderstorm duration will be

approximately 40min; thus, it is expected that the lower

bound for the detection rate of thunderstorms without

including IC lightning is probably not far from 75%,

though this is likely to be sensitive to region as well as

time of year.

The CG flash detection efficiency of the NLDN could

also impact thunderstorm detection rates. CG flash de-

tection by the NLDN exceeds 90% (Biagi et al. 2007)

and, thus, missed CG detections are unlikely to result in

significant numbers of missed thunderstorms.

The regional operations range of networks like

the arrays used by MacGorman et al. (2011) are not

suitable for the development of a national or even

large regional catalog of thunderstorms. Total lighting

detection systems covering the United States do exist

[the reader is referred to the work of Rakov (2013) for a

review of modern 3D lightning mapping networks],

but short periods of record limit their utility for

building a robust thunderstorm climatology. Future

versions of ThOR could incorporate in-cloud lightning

from local/regional LMAs and/or national total light-

ning detection systems in order to estimate the im-

pact of using only CG lightning for thunderstorm

identification.

b. Event selection, data preprocessing, and quality
control

To minimize the amount of radar data processed by

ThOR, radar data are acquired if and only if a CG

lightning strike occurs within 230km of a WSR-88D

radar site. A 4-h buffer, centered on the time of the CG

lightning, is imposed to account for thunderstorm tracks

that may initiate or terminate within 2h of the occur-

rence of CG lightning. Temporally contiguous blocks of

data from all radars in range of CG lightning are ag-

gregated into events. Events are likely to contain many

hours of data from multiple radars but all data are in

spatiotemporal proximity to CG lightning. The event

designation simplifies the processing, since the de-

velopment of a given thunderstorm track relies on data

occupying a small spatiotemporal window; access to

data covering the entire domain and period of record is

not necessary.

The quality control of the radar data that are inputs to

ThOR can be accomplished through any method that

mitigates nonmeteorological echoes. For the results

presented in section 3, the w2qcnn algorithm, packaged

within the Warning Decision Support System–

Integrated Information (WDSS-II; Lakshmanan et al.

2007) suite of radar processing/analysis algorithms, is

used. This algorithm relies on a trained neural network

based on 28 inputs from the reflectivity, velocity, and

spectrum width fields, mainly from the lowest scans, to

remove nonmeteorological errors. Heuristic modules

are used to identify and remove echoes from insect

‘‘bloom,’’ volumes collected in clear-air mode,

and hardware problems. The algorithm provides

the option to retain or discard pixels on either a pixel-

by-pixel basis or on the basis of the majority classifi-

cation of contiguous regions of pixels. In ThOR, the

former method is used, as the latter sometimes erro-

neously removes areas of precipitation far from

the radar. The algorithm is effective in removing most

nonprecipitating echo from ground clutter and

biological scatterers while retaining almost all

precipitation echoes.

c. Radar data merging and composite reflectivity

Radar reflectivity fields from the multiple radars that

constitute a given event must be merged into a single

volume on a commonCartesian grid. This is the first step

in ThOR. Merging in ThOR relies on the w2merger al-

gorithm, which follows the approach described by

Lakshmanan et al. (2006) and is included in WDSS-II.

The w2merger algorithm accounts for varying radar

beam geometry with range, vertical gaps between radar

scans, and asynchronism between radars (Lakshmanan

et al. 2006). It takes the most recent full volume from

each radar in the event, using the time of the last ele-

vation scan as the end of the full volume, and merges

them together into a volume of reflectivity mosaics on a

latitude–longitude–height grid. The blending of data

from multiple radars relies on a distance-dependent

weighting, exp(2r2/s), where r is the distance and s is

set to 50 km. Data are mapped to a 0.01378, 0.0118, 1 km
(latitude, longitude, height, respectively) grid. The al-

gorithm also calculates the column-maximum re-

flectivity (composite reflectivity) at each grid point,

resulting in a merged composite reflectivity (MCZ;

Fig. 2a).
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d. Stratiform precipitation attenuation

Preliminary testing of the reflectivity cluster iden-

tification algorithm used in ThOR, and described in

detail in the following subsection, revealed that large

stratiform regions are often identified as single clusters

that the algorithm occasionally combines with smaller-

scale convective regions. Since smaller-scale convective

regions are taken to be the more direct manifestation of

thunderstorms than the larger-scale stratiform regions

(even though some stratiform precipitation may be a

direct consequence of nearby deep convection), the ar-

tificial inflation of cluster size through consolidation

needs to be prevented. By reducing the reflectivity

values in stratiform regions below the threshold used to

identify reflectivity clusters (30 dBZ for ThOR), these

areas should no longer be detected. This attenuation of

reflectivity values within stratiform regions requires first

distinguishing stratiform precipitation from convective

precipitation.

The stratiform–convective discrimination adopted in

ThOR is similar to the approach of Biggerstaff and

Listemaa (2000). The algorithm results in a stratiform–

convective score for each column on the common Car-

tesian grid that is used to adjust the column’sMCZ value

using a fuzzy logic approach. The quantities in-

corporated into the algorithm are 1) the value of MCZ;

2) the magnitude of the horizontal gradient of MCZ,

calculated using a sixth-order centered difference; 3) the

vertical gradient of reflectivity calculated as the differ-

ence between the maximum reflectivity in the column

and the reflectivity 3 km above the level of the maxi-

mum, divided by the distance between them;1 and 4) the

horizontal reflectivity gradient at a height 3 km above

the level of maximum reflectivity.

For all columns in which the MCZ exceeds 25dBZ,

the stratiform–convective algorithm assigns a score (S)

between zero and one, where zero indicates definitely

stratiform and one indicates definitely convective. Col-

umns with an MCZ less than 25dBZ are not scored.

Refer to the appendix for a description of the logic used

to score columns. The values ofMCZ are adjusted based

on the associated stratiform–convective score using a

fuzzy logic approach. A column with S, 0:25 is classi-

fied as ‘‘definitely stratiform’’ and theMCZ is set to the

‘‘stratiform value,’’ which is either 20 dBZ or the value

of reflectivity 2 km above the level of maximum re-

flectivity, whichever is less. A column with S. 0:55 is

classified as ‘‘definitely convective’’ and retains its

original MCZ value, defined as the ‘‘convective value.’’

The MCZ value for a column with an intermediate

value of S is assigned a reflectivity that is a weighted

average of its convective value (original value) and its

FIG. 2. (a) Merged composite reflectivity (MCZ) from 24 Apr

2007, (b) MCZ following stratiform filtering, and (c) filtered MCZ

with clusters in white.

1 Similar to the approach used by Zipser and Lutz (1994), in

order to account for storm tilt, the reflectivity value at 3 km above

the level of maximum reflectivity is the maximum reflectivity

within a 9 km 3 9 km lateral box centered on the grid point.
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stratiform value (defined above). The resultant filtered

MCZ field (Fig. 2b) is then used to identify reflectivity

clusters.

e. Reflectivity cluster identification

A reflectivity cluster is defined for this work as a

spatially coherent region of reflectivity in the MCZ

field. ThOR relies on the w2segmotionll algorithm of

WDSS-II, which utilizes k-means clustering and a

watershed transform that collectively enable cluster

identification that is more adaptive than traditional

methods of object identification that rely exclusively

on global and arbitrarily defined field thresholds

(Kolodziej Hobson et al. 2012). Specifically, cluster

identification in w2segmotionll involves two principal

steps (Lakshmanan et al. 2002, 2009; Kolodziej

Hobson et al. 2012): 1) quantization of the reflectivity

field using k-means clustering and 2) segmentation of

the quantized field using a watershed transform [both

k-means clustering and the watershed transform are

image segmentation techniques that can be used for

cluster identification; however, k-means clustering is

used in w2segmotionll solely for field quantization

(Kolodziej Hobson et al. 2012)].

The k-means clustering is an iterative procedure that

aggregates gridded data into clusters with a unique,

quantized k value. All grid points assume the k value of

the parent cluster. Gridpoint assignment to a candidate

cluster is achieved through minimization of a cost

function defined according to 1) the difference between

the grid point’s texture vector and the mean texture of

the candidate cluster (self-similarity; Lakshmanan and

Smith 2009) and 2) the number of gridpoint neighbors

that have a k value that is different from the k

value of the candidate cluster (spatial coherence;

Lakshmanan et al. 2002; Lakshmanan and Smith 2009).

In w2segmotionll the texture vector is defined using lo-

cal neighborhood statistics including mean, variance,

and coefficient of variance (Lakshmanan et al. 2002).

Once all grid points are assigned in a given iteration, the

mean texture value of each cluster is recalculated using

the new aggregate of grid points and the process of

gridpoint assignment is repeated. This approach results

in a quantized field that, unlike a simple rounding ap-

proach, considers the spatial arrangement of the data

(Lakshmanan et al. 2002).

Following k-means clustering, the extended watershed

transform of Lakshmanan et al. (2009) is used to segment

the quantized field into clusters. The w2segmotionll

watershed transform is a maxima-finding technique that

operates by identifying regions that encompass local

maxima and satisfy a saliency criterion defined by a

preset minimum region size. Segmented regions that fall

below the saliency criterion are combined with neigh-

boring regions provided their separation is within a

preset maximum distance and the regions are connected

by pixels exceeding a minimum reflectivity value. In

the ThOR implementation, the default saliency crite-

rion is 50 km2, the default maximum distance between

‘‘adjacent’’ clusters that can be combined is ;1.76 km,

and the default minimum reflectivity value is 30 dBZ.

All of these values can be adjusted by the user. An

example of clusters identified from the filtered MCZ is

illustrated in Fig. 2c.

The saliency criterion used for ThOR was de-

termined through extensive, albeit largely qualitative,

evaluation of cluster identification performance using a

range of saliency criteria and a collection of manually

analyzed cases with a variety of convective organiza-

tions. The 50-km2 criterion was found to be the optimal

compromise between smaller thresholds that allowed

for too many small clusters that degraded track accu-

racy and increased the algorithm’s computational

burden, and larger thresholds that filtered out ‘‘rea-

sonably’’ small-scale storms. Since the cluster tracking

step occurs prior to lightning attribution (Fig. 1) small

short-lived deep convection not associated with light-

ing must still be included in the cluster tracking step.

Based on empirical evidence collected as part of this

work, even with a carefully crafted tracking logic, de-

scribed below, these small-scale clusters prove to de-

grade tracking accuracy. Moreover, as a consequence

of ThOR’s approach to tracking, increased cluster

numbers have the potential to exponentially increase

the computation time.

The default saliency criterion used in ThOR should

render satisfactory results over the United States. While

the regional dependence of the saliency criterion is be-

yond the scope of this work, the user should be aware

that additional tuning of this thresholdmay be necessary

if ThOR is applied to regions with climates that tend to

support small (typically air mass) thunderstorms (e.g.,

Florida).

The 30-dBZ minimum reflectivity value used for

ThOR has precedent in the work of Potts et al. (2000),

Gallus et al. (2008), andDuda andGallus (2010), but it is

lower than the thresholds used by Hocker and Basara

(2008) and Goudenhoofdt and Delobbe (2013), who

used a threshold of 40 dBZ, and May and Ballinger

(2007), Davini et al. (2012), and Smith et al. (2012), who

used a threshold of 35 dBZ. Convective precipitation is

generally assumed to have reflectivity values exceeding

40dBZ (Steiner et al. 1995; Geerts 1998; Parker and

Johnson 2000); however, the lower threshold used here

is justified because stratiform precipitation is attenuated

and lightning is included.
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f. Cluster tracking

Like the Storm Cell Identification and Tracking

(SCIT; Johnson et al. 1998) algorithm, the Thunder-

storm Identification, Tracking, Analysis, and Now-

casting (TITAN; Dixon and Wiener 1993) algorithm,

and other object tracking approaches (e.g., Stumpf et al.

1998; Root et al. 2011), ThOR tracks object centroids.

Centroids in ThOR are defined as the center of an el-

lipse fit to the shape of the cluster. Ellipses are used

instead of the irregularly shaped clusters because they

facilitate a superior interpolation of cluster position

and size (used for lightning attribution, described in

section 2g).

Unlike SCIT, TITAN, and the mesocyclone de-

tection algorithm (MDA; Stumpf et al. 1998), ThOR is

designed for offline processing of archived data, not for

online (real time) nowcasting. For online algorithms,

the track of an object must be developed using only the

previous positions of the object; future positions are

unknown. However, offline algorithms have access to

the full data record, so that all possible combinations of

object sequences can be developed using all possible

observed object positions. The result of offline tracking

algorithms like ThOR is a collection of candidate

tracks that branch away from each object being tracked

(Fig. 3).

The candidate track, within the set of possible tracks,

that most likely corresponds to the correct track is

generally taken to be the track that minimizes a cost

function defined according to intratrack variability in

object characteristics. In ThOR, focus is placed on

minimizing intratrack variability in object velocity by

selecting as the best track the candidate cluster trackwith

the lowest track-averaged error (Fig. 3). Track-averaged

error is defined as the geodesic difference between the

position of an observed cluster centroid along the track

and the extrapolated position from the previous cluster

FIG. 3. Illustration of the tracking procedure used in ThOR. Cluster centroids at the initial

time (t0) and five subsequent times (t1–t5) are illustrated with dark gray, red, blue, green,

orange and light gray squares. The initial cluster ellipse is illustrated in black. Extrapolated

cluster positions from t0–t5 cluster centroids appear as colored circles. Search areas around

extrapolated cluster positions appear as semitransparent circles colored according to the time

that they are valid. Candidate cluster tracks are illustrated with gray lines, and the candidate

thunderstorm track is illustrated with black lines.
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position, averaged over the duration of the candidate

cluster track.

Prioritizing the minimization of intratrack variability

in object velocity requires an accurate first guess for

cluster motion. In ThOR, the 0–6-km mean wind from

NARR (Mesinger et al. 2006) is used as the initial mo-

tion estimate. NARR data are distributed on a Lambert

conic conformal projection grid with 32-km gridpoint

spacing. Data are available at a 3-h temporal granularity.

NARR data are used instead of Rapid Update Cycle

(RUC) analyses because NARR data cover the entire

NEXRAD period of record. The mean wind is tempo-

rally interpolated to the cluster observation time, and the

value from theNARRgrid point nearest to the observed

cluster centroid is used for the first guess of cluster mo-

tion. NARRwinds are used for an increment of time that

is set using a user-tunable narrbound variable. Based on

track parameter training, described in section 2.f.1),

narrbound is set to a default of 10min. As the track gets

longer, a reliable motion estimate can be obtained from

the position history of the cluster. Therefore, between

narrbound and 30min, the motion estimate is the

weighted average of the NARR mean wind and the

previous cluster motion along the candidate cluster

track. After 30min, themotion estimate is entirely based

on the average motion calculated from the position his-

tory over a time interval equivalent to the variable mo-

tiontime, set to a default of 45min [section 2f(1)].

To bound the exponential growth in the number of

candidate cluster tracks (and attendant processing

time) in offline algorithms, a gating function is often

implemented to limit the number of objects that can be

used to develop candidate cluster tracks (Stumpf et al.

1998; Scharenbroich et al. 2010). A gating function

constrains the search area for objects to associate to

tracks. Its use is not only justified as a way to bound

processing time but is also justified based on un-

certainties in object motion estimates; high-confidence

estimates of object motion necessitate a smaller search

area. For ThOR, the two most likely sources of thun-

derstorm motion estimate uncertainty are as follows:

1) inconsistencies between the NARR mean wind and

the actual cluster motion resulting from (i) natural

variability in storm motion owing to the inherent

unsteadiness of thunderstorm propagation and/or

(ii) inconsistencies between the NARR mean wind and

the actual steering current; and 2) random variations in

the location of the object centroid stemming from

changes in the size and/or shape of clusters (the NARR

mean wind may exactly match the actual thunderstorm

motion but centroid wobbles caused by morphological

changes in the cluster cause the detected centroid po-

sition to depart from the extrapolated position). A

robust gating function must be structured to allow for

these motion estimate uncertainties while being re-

strictive enough to limit the number of candidate

thunderstorm tracks (processing time) and to minimize

the chance that a cluster is assimilated into the

wrong track.

The gating function used in ThOR is defined accord-

ing to a dynamic search radius (R). Based on the results

from algorithm training discussed below, R depends on

the storm speed and the length of time over which the

cluster position extrapolation is calculated.

An important attribute of the ThOR tracking is the

allowance made for missed cluster detections. All object

identification algorithms are prone to miss objects and

the w2segmotionll algorithm is no exception. To prevent

these missed identifications from prematurely termi-

nating tracks and thereby inflating thunderstorm num-

bers and deflating mean thunderstorm duration, time

skipping is incorporated into the algorithm: ThOR will

search both one and two time steps ahead for clusters to

associate to a track.

A summary of the tracking procedure is illustrated in

Fig. 4. Time skipping is reflected in the steps involving

the calculation of extrapolated cluster positions and

search radii for which time intervals (Dt) of both one

and two time steps (dt) are used. The result of the

tracking procedure is a collection of candidate

thunderstorm tracks.

The following two subsections describe the training

[section 2f(1)] and verification [section 2f(2)] of ThOR.

Algorithm training was conducted to tune both the gat-

ing function and the parameter values for integrating the

NARRwinds into the motion estimates (narrbound and

motiontime), while algorithm verification was designed

to assess the overall accuracy of ThOR tracking. Both

the training and verification relied on manual analysis of

tracks developed collaboratively by a committee of three

meteorologists. These manual tracks were designed to

represent the ‘‘best practices’’ in tracking and were used

as the reference for ‘‘correct’’ tracks. To ensure that the

manual tracks were superior to algorithmically derived

tracks, a committee of threemeteorologists was afforded

access to data besides just cluster centroids—specifically,

cluster boundaries and the MCZ field from which the

clusters were derived. Since the focus of the training was

on the tracking only, not the cluster identification com-

ponent, the committee was not responsible for identi-

fying clusters; the algorithms and themanual tracks were

based on the same sets of clusters.

1) TRACK PARAMETER TRAINING

A novel approach to training was adopted for this

work. For each value of narrbound and motiontime
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tested [narrbound 5 (0, 10, 20min), motiontime 5
(30, 45, 60min)], an estimated track was created for

each segment of each manually analyzed cluster track.

For clusters within a manual track and not at the track

terminus, the minimum search radius (rmin) that would

have been required to create each segment of the track

(i.e., the value required to ‘‘catch’’ the next cluster in the

manual track) was calculated. For clusters at the ter-

minus of a manual track, rmin was the minimum value

that would incorrectly extend a track (i.e., incorrectly

associate a cluster to the track). Properly tuned values of

narrbound and motiontime should yield cluster motions

with a maximum separation between the small rmin

values that are required to correctly continue a track and

the large rmin values that would result in the incorrect

continuation of a track beyond its terminus. A properly

tuned gating function should have an R that is larger

than the rmin values that are required to correctly

continue a track and smaller than the rmin values that

incorrectly continue a track beyond its terminus.2 To

represent a variety of storm modes and storm speeds in

the training set, a collection of 62 tracks from 16 events

was considered (Table 1). Differences in the separation

between rmin for correct and incorrect track continua-

tions across the combinations of narrbound and mo-

tiontime were small (not shown). A slightly better

discrimination was found for narrbound 5 10min and

motiontime 5 45min; thus, these were chosen as the

default values.

FIG. 4. Data and process flowchart for the tracking component of ThOR. The time interval between merged reflectivity volumes is

denoted dt.

2 Incorrect continuations do not include the erroneous associa-

tion of clusters on nearby tracks because the logic of the algorithm

will likely filter out erroneous tracks developed through in-

corporation of nearby tracks through theminimization of the track-

averaged error. In contrast, the track-averaged error will not filter

out incorrect continuations beyond the actual track terminus.
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Using the default values of narrbound and motion-

time, the gating function was tuned by first considering

the distribution of rmin to develop a threshold

value/formula for R. Since missed clusters along a track

are allowed, the gating function must account for both a

standard time interval between clusters and a larger

time interval over which missed clusters may exist. As

such, track projections from the clusters along the

manually analyzed tracks were separately analyzed for a

single time step (Dt5 5min) and two time steps (Dt5
10min).

Preliminary analysis of the search radii across the set

of tracks revealed that correct continuations required

larger search radii as storm speed increased (Fig. 5a,

‘‘plus’’ symbols denote correct continuations). Search

radii for incorrect continuations were largely in-

dependent of storm speed (Fig. 5a). Using Fisher’s linear

discriminant (FLD; Wilks 2011)3 applied to the dis-

tribution of correct continuations and incorrect con-

tinuations as a function of storm speed (V), a formula

was derived for R (km) as a function of V (m s21) and

Dt (min):

R5 9:041 a(Dt2 5)/51 0:1427V , (1)

where a is set to 3 km by default. The term a(Dt2 5)/5 is

included as a succinct way of imposing adaptability in R

to a variable time interval and emerged from FLD

analysis of the distribution of search radii relative to V

for Dt5 10min.

Based on the recommendation of Johnson et al.

(1998), the impact of a dynamic search cone width

(referred to as directional thresholding) within the

gating function was examined. Directional thresh-

olding was proposed by Johnson et al. as a way of

limiting incorrect track continuations in the SCIT

algorithm. The search cone formulation examined

was based on R and for the distance a cluster was

projected to travel since its last known location (D):

Du5 tan21(R/D). Noting that, according to (1),

R5 10:47 km for V5 10m s21 (D5 3 km for Dt5
5min); without directional thresholding there is sizable

region, both ahead of and behind the centroid, that

could contain clusters that, by virtue of the large di-

rectional change that would be required for the

cluster to be included as a continuation of the track, are

likely incorrect continuations. Thus, ostensibly, some

measure of directional thresholding in the gating

function would seem to be justified. However, the

training revealed very few incorrect continuations

within the search radius and outside the search cone

(i.e., incorrect continuations that required directional

thresholding to be filtered out), but numerous correct

continuations that were within the search radius but

outside the search cone (i.e., correct continuations that

would have been filtered out with the inclusion of di-

rectional thresholding). As a result, directional thresh-

olding was not included in the final formulation of the

gating function.

It is important to acknowledge that the results of

the training depend strongly on the approach to

cluster identification adopted for this work. For ex-

ample, analysis of SCIT clusters (section 3) revealed a

TABLE 1. List of events used for ThOR training.

Start End Region Type of storm

2026 UTC 9 Jul 2005 0140 UTC 10 Jul 2005 West TX Multicell

1800 UTC 13 Jul 2005 1943 UTC 13 Jul 2005 East OK, West AR Ordinary cells

1709 UTC 14 Jul 2005 2015 UTC 14 Jul 2005 East OK, West AR Ordinary cells

1906 UTC 15 Jul 2005 2106 UTC 15 Jul 2005 East OK, West AR Ordinary cells

0100 UTC 13 Jan 2006 0800 UTC 13 Jan 2006 AR Squall line

0055 UTC 9 Mar 2006 1005 UTC 9 Mar 2006 TX, OK, AR Supercell plus squall line

1740 UTC 11 Mar 2006 0000 UTC 12 Mar 2006 OK, MO Supercells

0010 UTC 13 Mar 2006 0710 UTC 13 Mar 2006 OK, KS, MO Supercells

1935 UTC 2 Apr 2006 0140 UTC 3 Apr 2006 North AR, MO, IL Supercell plus squall line

2120 UTC 12 Apr 2006 0020 UTC 13 Apr 2006 AR Backbuilding multicell

1840 UTC 16 May 2006 2105 UTC 16 May 2006 IA, MO Ordinary cells, weak multicell

2305 UTC 28 Feb 2007 0515 UTC 1 Mar 2007 KS, MO Supercell

1905 UTC 17 Apr 2007 2235 UTC 17 Apr 2007 TX Squall line

0505 UTC 24 Apr 2007 0820 UTC 24 Apr 2007 KS, NE, IA Multicell

1355 UTC 24 Apr 2007 1535 UTC 24 Apr 2007 CO Elevated cells near upper low

2105 UTC 24 Apr 2007 0320 UTC 25 Apr 2007 South TX Supercell

3 The incorrect continuations associated with search radii greater

than 30 km were removed prior to calculating the FLD in order to

satisfy the assumption of similar covariance matrices between the

correct continuation and the incorrect continuation sets. This is

justified, since there were no correct continuations at such a

large range.
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significantly higher spatial density compared to clus-

ters identified using the approach described in section

2e. As such, while directional thresholding proved to

be unnecessary for ThOR, it might improve the

tracking using SCIT centroids (Stumpf et al. 1998).

Moreover, the values of narrbound and motiontime,

and the formulation of the gating function will likely

change if the procedure for cluster identification is

altered.

2) TRACKING VERIFICATION

A two-part approach to verifying the ThOR tracking

algorithm is adopted. The first component is loosely

modeled off the work of Johnson et al. (1998). Johnson

et al. verified the SCIT algorithm by comparing SCIT

tracks to manually analyzed tracks, assessing how many

times SCIT made the correct association from one time

to the next. While a comparison to a correct track is an

attractive approach, the Johnson et al. method is limited

by the lack of specificity, overestimation of skill, and

the labor-intensive nature of the manual tracking

(Lakshmanan and Smith 2010). For ThOR tracking

verification, ThOR tracks are compared to manually

analyzed tracks from a small set of events; however,

additional specificity and more accurate skill assessment

are enabled through a descriptive contingency table

(Table 2).

The second component of tracking verification is

modeled off of the work of Lakshmanan and Smith

(2010), who propose using a set of descriptive statistics

that describe overall track behavior and can be used to

compare different tracking algorithms. Specifically,

they propose using 1) median track duration, 2) the

RMSE of the track compared to a linear fit (curvature),

and 3) the standard deviation of vertically integrated

liquid (VIL) along the track (incoherence). The phi-

losophy of this strategy is that a better algorithm

should produce longer, straighter, and more coherent

FIG. 5. Search radii (rmin) as a function of storm speed for correct continuations (gray ‘‘plus’’ symbols) and in-

correct continuations (black diamonds) for a time step of (a) 5 and (b) 10min. The black lines represent the function

expressed in (1) for the dynamic search radius (R) derived from Fisher’s line discriminant.

TABLE 2. Contingency table for paired tracks.

Cluster on ThOR track at a given time

Cluster on manually analyzed

track at a given time

Yes No

Yes Hit (h) Miss (m)

Type 1 (m1): ThOR track starts too late

Type 2 (m2): ThOR track ends too early

Type 3 (m3): Manual and ThOR tracks

exist and have different clusters

Type 4 (m4): Manual track includes

a cluster that ThOR track skips

No False alarm (fa) Correct negative (cn)

Type 1 (fa1): ThOR track starts too early

Type 2 (fa2): ThOR track keeps going

Type 3 (fa3): ThOR track includes a cluster

that manual track skips*

*As with ThOR tracking, manual tracking could include a ‘‘skip’’: a time step along a track does not have an associated cluster.
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(less incoherent) tracks. Since this approach does not

require comparison to manually analyzed correct

tracks, it can be applied to a much larger sample

of tracks.

A potential disadvantage of the descriptive approach

of Lakshmanan and Smith is that both curvature and

incoherence may be correlated with the track duration

(Reed and Trostel 2012). To correct for this de-

pendence while still embracing the philosophy that a

superior tracking algorithm produces straighter, more

coherent tracks, the curvature is calculated as a

local curvature, referred to as jitter, defined as

f[1/(N2 2)]�N21
t52 d2t g1/2, where N is the total number of

clusters along a track and dt is the distance between a

cluster at time t and the linearly interpolated position at

time t using centroid positions at t2 1 and t1 1. A

straighter track would exhibit smaller jitter. For the

sample of ThOR-derived candidate thunderstorm

tracks (tracks prior to lightning attribution) used for

verification based on descriptive statistics (;35 000

tracks from 2005; more information on this sample is

provided below), the sample Pearson correlation co-

efficient between jitter and duration was found to

be 20.06.

Incoherence was assessed for this work using the

standard deviation of cluster-maximum radar reflectivity

factor (sZmax
). In contrast to the approach of Lakshmanan

and Smith, maximum radar reflectivity factor was used

instead of VIL in the calculation of incoherence. The

sample Pearson correlation coefficient between in-

coherence and duration for the ThOR-derived candi-

date thunderstorm tracks was found to be 0.38.

However, by normalizing incoherence by the square

root of track duration, the correlation decreases

to 20.15. Thus, the descriptive statistics used for ver-

ification are track duration, jitter, and normalized

incoherence.

For both components of the verification, the ThOR

tracks were compared with a benchmark tracking algo-

rithm to provide context for the verification statistics.

This benchmark algorithm is essentially a ‘‘poor man’s’’

tracking algorithm:

d Tracks are developed by choosing the cluster nearest

to, and no farther than 12 km from, the projected

location at each time step.

d NARRmeanwind is used as themotion estimate at all

points along the track.
d Cluster skipping is not allowed.

For all events used for verification, both ThOR and the

benchmark algorithm were run on the same set of

clusters.

A benchmark tracking algorithm could have been

chosen from existing, well-established ‘‘storm’’ iden-

tification and tracking algorithms such as SCIT or

TITAN. However, an alternative approach was adop-

ted for the following reasons. First, unlike ThOR, both

SCIT and TITAN are online tracking algorithms;

a ‘‘fairer’’ benchmark should be an offline algorithm.

Second, both SCIT and TITAN involve tight in-

tegration of cluster identification and tracking. As such,

teasing out differences solely attributable to the track-

ing logic (the focus of the verification) would be diffi-

cult. ThOR tracking could be applied to the clusters

identified through another algorithm, but this would

necessitate retraining ThOR, since cluster characteris-

tics such as density and volume-to-volume behavior are

likely to be very different from the characteristics of

clusters identified via w2segmotionll. Finally, it is our

assertion that neither SCIT nor TITAN nor ThOR

should serve as a benchmark to assess tracking algo-

rithm performance. Instead, the ideal benchmark

should adopt straightforward logic and be easy to im-

plement. The poor man’s tracking algorithm used here

satisfies these requirements.

The manually analyzed tracks used for verification

come from four events not included in the events used

for training. Each event consists of a 2-h window of

TABLE 3. List of events used for the manual tracking component of ThOR verification.

Start End Radar Storm mode Speed

0000 UTC 23 Jun 2003 0200 UTC 23 Jun 2003 KUEX Supercells Very slow

2130 UTC 7 Jul 2005 2330 UTC 7 Jul 2005 KUDX Multicell Slow

2000 UTC 15 Nov 2005 2200 UTC 15 Nov 2005 KNQA Supercells and line segments Fast

0200 UTC 06 Jun 2008 0400 UTC 06 Jun 2008 KTLX Squall line Moderate

TABLE 4. Hits, misses, false alarms (following the contingency

table described in Table 2) for the four verification events for which

tracks were manually analyzed.

ThOR Benchmark

h 1016 975

m1 60 27

m2 53 63

m3 6 75

m4 8 9

fa1 39 98

fa2 55 2

fa3 29 16
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clusters based on data from a single radar (Table 3). The

events are intended to represent different speeds and

storm modes but constitute a necessarily small sample,

since manually tracking is labor intensive and time

consuming. The first step in comparing ThOR tracks to

manually analyzed tracks is to pair a manual track to the

ThOR track that shares the most clusters. Each point

along each track in a pair is cataloged as either a hit, a

miss, or a false alarm following the contingency table

described in Table 2. ‘‘Correct negative’’ points could be

treated as hits but are instead ignored so as not to inflate

skill. All points along a ThOR (manually analyzed)

track that are not paired with a manually analyzed

(ThOR) track are counted as false alarms (misses).

Results for ThOR tracks and benchmark tracks for the

four events considered are summarized in Table 4.

From the total hits, misses, and false alarms for all

events, the probability of detection (POD), the false

alarm rate (FAR), and the critical success index (CSI)

were computed using the following expressions (refer to

Table 2 for nomenclature):

POD5
�h

�h1�(m11m21m31m4)

FAR5
�( fa11 fa21 fa3)

�h1�( fa11 fa21 fa3)

CSI5
�h

�h1�( fa11 fa21 fa3)1�(m11m21m31m4)
.

Results (Table 5) indicate that ThOR matches the

manual tracks slightly better than the benchmark

tracks.

As noted above, one of the chief benefits of using

descriptive statistics is that they do not rely upon man-

ually analyzed correct tracks and, consequently, can be

applied to a much larger sample. However, to determine

the reference values of these statistics, they are first

applied to the small set of events used to determine

manual tracks (Table 6). [As adopted by Lakshmanan

and Smith (2010), the mean jitter and mean normalized

coherence are calculated only for tracks at or above the

median duration.] These results indicate that while the

differences in jitter and incoherence between the three

tracking methods are not significant (p values from a

Student’s t test are around 0.3), the median duration of

the benchmark tracks is considerably lower than that

of the other two. This difference is likely a consequence

of the exclusion of cluster skipping and the use of a less

sophisticated calculation of cluster motion compared to

ThOR tracking. Overall, the descriptive statistics of the

ThOR tracks are nearly identical to those of the manual

tracks, suggesting good agreement.

When the descriptive statistics are evaluated for the

much larger set of 35 370 tracks derived from a range of

multiradar events in 2005 (Table 7), the ThOR tracking

once again produces statistically significantly longer

tracks than the benchmark tracking (Table 8). Both

mean jitter and mean normalized incoherence are

smaller for the ThOR algorithm, but these differences

are not statistically significant based on a Student’s t test.

g. Lightning association

Candidate thunderstorms, whose tracks are defined

through the tracking algorithm described above, are

TABLE 7. List of events in the large sample of candidate thun-

derstorm tracks that are used for track verification based on de-

scriptive statistics. These are multiradar events occurring in 2005.

Start End

Candidate

thunderstorm tracks

1253 UTC 1 Jan 0303 UTC 6 Jan 6737

1721 UTC 22 Feb 1304 UTC 25 Feb 2564

2200 UTC 12 Jul 2325 UTC 21 Jul 16 583

1847 UTC 18 Oct 2108 UTC 21 Oct 2618

0405 UTC 29 Oct 0919 UTC 1 Nov 2686

2354 UTC 25 Nov 2117 UTC 28 Nov 4182

TABLE 5. Skill scores for ThOR and benchmark tracks using

manually analyzed tracks as verification.

Method POD FAR CSI

ThOR 0.889 0.108 0.803

Benchmark 0.849 0.106 0.771

TABLE 6. Descriptive statistics applied to the four events used for

manual tracking (Table 3).

Method

Median

duration

(s)

Mean

jitter

(km)

Mean

normalized

incoherence

(dBZ s21)

No. of tracks (total,

at or abovemedian

duration)

Manual 1238 2.62 0.053 167, 89

ThOR 1241 2.64 0.051 166, 89

Benchmark 942 2.41 0.051 184, 95
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designated as thunderstorms if at least one cloud-to-

ground lightning strike is observed ‘‘within’’ the bounds

of the candidate thunderstorm at any point in its life-

time. Candidate thunderstorm bounds at a particular

time are defined using an ellipse whose major axis, mi-

nor axis, and orientation are set by the w2segmotionll

algorithm to best represent the size and shape of the

associated cluster. Because the cluster positions making

up the candidate thunderstorm are recorded at radar

observation times only (generally every 5min), while

the cloud-to-ground lightning observations in the data-

set used for this work have a time interval of 1min, and

because ellipse boundaries will evolve between the

MCZ data times, candidate thunderstorm bounds are

temporally interpolated to the lightning observation

times. This is accomplished through linear interpolation

of the four primary attributes of the representative el-

lipse (centroid position, major axis length, minor axis

length, and orientation). Any candidate thunderstorm

with at least one cloud-to-ground lightning strike within

any cluster ellipse along its track will be designated a

thunderstorm.

3. 23–28 April 2007 case

A qualitative evaluation of ThOR is presented in

this section through analysis of thunderstorms identi-

fied during a multiday event in April 2007. This event

(1525 UTC 23 April to 0936 UTC 28 April)4 spanned

most of the U.S. central and southern plains (Fig. 6), and

was characterized by a variety of convective organiza-

tion types including supercells, disorgranized multicells,

and quasi-linear systems. The merged composite reflecti-

vity was derived on a Cartesian grid with a grid spacing

of 0.0148 latitude 3 0.0118 longitude (approximately

1km 3 1km).

A total of 3151 thunderstorms, consisting of 27 394

reflectivity clusters, were identified. The event was

composed of 8314 candidate thunderstorms; thus, only

38% of candidate thunderstorms were associated with

CG flashes. On average, 52.9 CG flashes were associated

with a given thunderstorm during this event, equating to

1.16 flashes per minute. Mean storm duration was

41.5min, and the mean storm size was 339km2 (which

corresponds to a diameter of 20.8 km for a circular

thunderstorm).

As expected, nonthunderstorm tracks (illustrated in

blue in Fig. 7) are generally relegated to northern lati-

tudes and the ‘‘back side’’ of the synoptic-scale system,

where convective available potential energy was osten-

sibly insufficient to support CG lightning. The absence

of IC lightning data may have also led to some missed

identifications in this region. Clusters of observed

thunderstorms tend to exhibit similar motion vectors,

which should also be expected. There are few if any

clusters that, by virtue of their high radar reflectivity,

should have been associated with a thunderstorm track

but are omitted by ThOR. There are several examples of

quasi-linear segments that have been consolidated into a

single thunderstorm (e.g., located in eastern Oklahoma,

western Arkansas, and southwestern Missouri in Fig. 7).

This result is consistent with the definition of a thunder-

storm that underpins the logic of the ThOR algorithm but

is also a consequence of any centroid-based method of

thunderstorm identification that requires that even spa-

tially expansive clusters must be represented as a single

point for the purposes of cataloging and tracking.

Closer examination of observed CG lightning and

thunderstorm tracks (Fig. 6) reveals instances of CG

lightning that, because of its spatial separation from

thunderstorm tracks, has not been associated with

thunderstorms. Lightning not associated with a ThOR-

identified thunderstorm is either a consequence of the

algorithm’s failure to catch small and/or low-reflectivity

clusters that are producing CG lightning, lightning pro-

ducing stratiform regions, or spurious lightning obser-

vations. Three representative examples of the first two

causes are illustrated in Fig. 8.

In Fig. 8a, CG lightning associated with the stratiform

precipitation region of a mesoscale convective system is

allowed to occur without thunderstorm identification.

Consistent with the definition of a thunderstorm adop-

ted here (a thundering cumulonimbus cloud), it is as-

sumed that CG-producing stratiform precipitation is a

part of the same thundering cumulonimbus cloud whose

most direct manifestation is the (smaller scale)

TABLE 8. Descriptive statistics applied to the large dataset of tracks identified from events in 2005 (Table 7).

Method Median duration (s) Mean jitter (km)

Mean normalized

incoherence (dBZ s21)

No. of tracks (total; at or

above median duration)

ThOR 1191 1.34 0.0407 35 370; 17 118

Benchmark 894 1.35 0.0421 39 392; 19 768

4 Level II WSR-88D data and NARR data were downloaded

from the National Climatic Data Center (NCDC), while the CG

flashes from the NLDN were downloaded from Iowa State’s In-

ternet Data Distribution archive.
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convective regions. As discussed in section 2d, this fil-

tering is enabled in ThOR through attenuation of

stratiform precipitation. Another illustration in which a

cluster of CG flashes within stratiform precipitation is

not associated with a distinct thunderstorm appears in

Fig. 8b. The spatial separation between the convective

and stratiform regions is much smaller (;50km) in this

example than in the prior example, but ThOR is still

able to correctly recognize that they should not be as-

sociated with a distinct thunderstorm.

The final example of CG flashes that have not been

associated with thunderstorm tracks reveals a failure of

ThOR to identify a small thunderstorm (Fig. 8c). As

discussed in section 2e, the saliency criterion utilized in

the ThOR implementation of w2segmotionll is set to

50km2. The thunderstorm near the southwest corner of

the Fig. 8c has a precipitation footprint of ;40–45km2

and yet should have been cataloged as a thunderstorm

given the occurrence of nearby CG lightning. As ad-

dressed in section 2e, the saliency criterion was set to

minimize the number of small clusters that degrade track

accuracy and increase the algorithm’s computational

burden. Missed thunderstorms are an inevitable conse-

quence of thresholds used in ThOR and any other auto-

mated thunderstorm identification algorithm. Analysis

has revealed few obvious examples of thunderstorms

missed by ThOR. Those that are missed are deemed to

be a justified collateral sacrifice for a consistent/objective

approach that can be applied tomuch larger datasets than

possible with manual analysis.

FIG. 6. CG lightning flashes (gray circles) and thunderstorm tracks for the 23–28Apr 2007 case.

The three inset boxes are the regions illustrated in Fig. 8.
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The comparison between ThOR and the benchmark

tracking algorithm [section 2f(2)] serves as the principal

means of verifying the performance of the tracking

component in ThOR. To complement this evaluation,

the behavior of ThOR is compared to the behavior of

SCIT for a subset of the 23–28 April 2007 case. The intent

is not to use this comparison as a means of evaluating the

accuracy of either scheme. Instead, the comparison is

made to offer a mainly qualitative comparison of ThOR

to a more familiar identification and tracking algorithm.

FIG. 7. Example tracks from the 23–28 Apr 2007 case used for qualitative assessment of ThOR. Radar images are

the merged composite reflectivity, thunderstorm tracks that exist at the time of the radar image are in white, non-

thunderstorm tracks that exist at the time of the radar image are in blue, and thunderstorm clusters positions at the

time of the radar image are indicated with white circles. Thunderstorm tracks without a corresponding cluster

centroid are a consequence of the allowances ThOR makes for skipped clusters.
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The version of SCIT integrated into the Severe Storms

Analysis Package of the WDSS-II suite was run for a

single radar (Fort Worth, Texas) for the period

1800 UTC 24 April–00600 UTC 25 April 2007 and

compared to the candidate thunderstorm tracks iden-

tified by ThOR for the same period. As reflected in

Fig. 9, SCIT tracks are far more numerous than ThOR

tracks: there are 1058 SCIT tracks and only 358 ThOR

tracks. The difference appears to depend less on the

tracking differences (though, as noted above, this

comparison is not capable of determining what role is

played by differences in tracking logic) and more on

the differences in cluster identification. As illustrated

in Fig. 10, there are 3–4 times as many SCIT clusters as

ThOR clusters.

4. Summary

The ThOR algorithm is an objective and tunable

Lagrangian approach to cataloging thunderstorms

that uses surveillance radar data and NARR mean

winds to identify and track radar reflectivity clusters

that are used to represent candidate thunderstorms.

Using observed cloud-to-ground lightning, thunder-

storm tracks are identified. Unlike Eulerian methods for

developing thunderstorm event climatologies, ThOR is

capable of cataloging nearly every thunderstorm that

occurs over the spatial domain and period of record,

thereby enabling analysis of internal properties of

thunderstorms.

ThOR involves 1) merging radar data from multiple

radars to a single volume on a common Cartesian

grid, 2) attenuating stratiform precipitation to improve

thunderstorm detection, 3) identifying spatially co-

herent regions in radar reflectivity (i.e., clusters),

4) tracking clusters to develop candidate thunderstorms,

and 5) associating cloud-to-ground (CG) lightning to

candidate thunderstorms to classify tracked clusters as

thunderstorms.

Training and verification of the cluster tracking com-

ponent of ThOR were discussed. Both training and

verification rely on comparison of ThOR tracks to

manually analyzed tracks. Additionally, the verification

step involved descriptive statistics applied to a sample of

tracks much larger than reasonably possible using

manually analyzed tracks. The verification step also re-

lied on a benchmark tracking algorithm that is

essentially a ‘‘poor man’s’’ approach to tracking and

provides context for the verification statistics.

Tracking verification revealed that ThOR tracks

matched the manual tracks slightly better than bench-

mark tracks. Moreover, the descriptive statistics of the

ThOR tracks are nearly identical to those of the manual

FIG. 8. Examples of CG lightning not associated with ThOR-

identified thunderstorms from the 23–28 Apr 2007 case used for

qualitative assessment of ThOR. Merged composite reflectivity

serves as the radar images, thunderstorm tracks that exist within

65min of the time of the radar image are in white, and the posi-

tions of CG lightning flashes are indicated with semitransparent

purple circles. (a) Region indicated by the northernmost box in

Fig. 6: indicated lightning flashes occurred in a 10-min time window

centered at 0830 UTC 24 April, and all cluster positions within the

time window are indicated with white circles. (b) Region indicated

by the southernmost box in Fig. 6: indicated lightning flashes oc-

curred in a 30-min time window centered at 0345 UTC 24 April,

and cluster positions at the time of the radar image are indicated

with white circles. (c) Region indicated by the middle box in Fig. 6:

indicated lightning flashes occurred in a 30-min time window cen-

tered at 1335 UTC 27 April, and cluster positions at the time of the

radar image are indicated with white circles.
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tracks, suggesting good agreement. When the de-

scriptive statistics were applied to a ;35 000-track

dataset, ThOR tracking produces statistically signifi-

cantly longer tracks than the benchmark tracking and

smaller mean jitter and mean normalized incoherence,

though the latter differences from the benchmark values

were not statistically significant.

A largely qualitative examination of ThOR per-

formance was performed using a multiday event in

April 2007. ThOR-identified thunderstorms were

primarily located in the warm sector, as should be

expected, and clusters of thunderstorms tended to

exhibit similar motion vectors. Few if any clusters, by

virtue of their high radar reflectivity, should have

been associated to a thunderstorm track but were

omitted by ThOR.

Analysis of the April 2007 event also focused on ex-

amples of CG flashes that were not associated with

thunderstorm tracks. These unassociated flashes tended

to occur in regions of stratiform precipitation that the

algorithm assumes to be part of the same thundering

cumulonimbus cloud whose most direct manifestation is

the (smaller scale) convective regions. An example was

also provided of a legitimate thunderstorm that, by virtue

of its small scale, failed to be detected by ThOR. Such

misses appear to be rare but are an expected trade-off

for a consistent/objective approach that can be applied to

much larger datasets than possible with manual analysis.
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APPENDIX

Stratiform–Convective Scoring

For each column on the common Cartesian grid, the

stratiform–convective score (S), ranging from 0 for

definitely stratiform to 1 for definitely convective, is

calculated by first setting S to 0 for any column with a

vertical reflectivity gradient (calculated between the

height of the maximum reflectivity and 3km above this

level) that is $5dBZkm21. Any column with a vertical

reflectivity gradient,5 dBZkm21 and either anMCZ$

50 dBZ or a horizontal gradient of MCZ $ 6 dBZkm21

is given a score of 1. All other columns are assigned a

score calculated using

S5 0:2SH 1 0:4SV 1 0:4SH
max13

,

where, SH , SV , and SHmax13
are the component scores for

the magnitude of the horizontal gradient of MCZ, the

vertical gradient of reflectivity, and the horizontal re-

flectivity gradient at a height 3 km above the level of

maximum reflectivity, respectively. Term SH is set to 0 if

the horizontal gradient of MCZ is#1 dBZkm21, 1 if the

horizontal gradient is $3 dBZkm21, and linearly in-

terpolated between 0 and 1 for horizontal gradient

values between 1 and 3dBZkm21. Term SV is set to 0 if

the vertical gradient is $4dBZkm21, 1 if the vertical

gradient is #1 dBZkm21, and linearly interpolated be-

tween 1 and 0 for vertical gradient values between 1 and

4dBZkm21. Term SHmax13
is set following the logic used

to set SH . The resultant field of S is then smoothed (to

account for issues with the radar’s sampling).
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