2,622 research outputs found

    Non-parametric data-driven background modelling using conditional probabilities

    Get PDF
    Background modelling is one of the main challenges in particle physics data analysis. Commonly employed strategies include the use of simulated events of the background processes, and the fitting of parametric background models to the observed data. However, reliable simulations are not always available or may be extremely costly to produce. As a result, in many cases, uncertainties associated with the accuracy or sample size of the simulation are the limiting factor in the analysis sensitivity. At the same time, parametric models are limited by the a priori unknown functional form and parameter values of the background distribution. These issues become ever more pressing when large datasets become available, as it is already the case at the CERN Large Hadron Collider, and when studying exclusive signatures involving hadronic backgrounds. Two novel and widely applicable non-parametric data-driven background modelling techniques are presented, which address these issues for a broad class of searches and measurements. The first, relying on ancestral sampling, uses data from a relaxed event selection to estimate a graph of conditional probability density functions of the variables used in the analysis, accounting for significant correlations. A background model is then generated by sampling events from this graph, before the full event selection is applied. In the second, a generative adversarial network is trained to estimate the joint probability density function of the variables used in the analysis. The training is performed on a relaxed event selection which excludes the signal region, and the network is conditioned on a blinding variable. Subsequently, the conditional probability density function is interpolated into the signal region to model the background. The application of each method on a benchmark analysis is presented in detail, and the performance is discussed.Comment: 33 pages, 18 figure

    Search for light long-lived neutral particles that decay to collimated pairs of leptons or light hadrons in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for light long-lived neutral particles with masses in the O(MeV-GeV) range is presented. The analysis targets the production of long-lived dark photons in the decay of a Higgs boson produced via gluon-gluon fusion or in association with a W boson. Events that contain displaced collimated Standard Model fermions reconstructed in the calorimeter or muon spectrometer are selected in 139 fb−1 of √s = 13 TeV pp collision data collected by the ATLAS detector at the LHC. Background estimates for contributions from Standard Model processes and instrumental effects are extracted from data. The observed event yields are consistent with the expected background. Exclusion limits are reported on the production cross-section times branching fraction as a function of the mean proper decay length cτ of the dark photon, or as a function of the dark-photon mass and kinetic mixing parameter that quantifies the coupling between the Standard Model and potential hidden (dark) sectors. A Higgs boson branching fraction above 1% is excluded at 95% CL for a Higgs boson decaying into two dark photons for dark-photon mean proper decay lengths between 10 mm and 250 mm and dark photons with masses between 0.4 GeV and 2 GeV

    A search for R-parity-violating supersymmetry in final states containing many jets in pp collisions at √s=13TeV with the ATLAS detector

    Get PDF
    A search for R-parity-violating supersymmetry in final states with high jet multiplicity is presented. The search uses 140fb−1 of proton-proton collision data at √s=13TeV collected by the ATLAS experiment during Run 2 of the Large Hadron Collider. The results are interpreted in the context of R-parity-violating supersymmetry models that feature prompt gluino-pair production decaying directly to three jets each or decaying to two jets and a neutralino which subsequently decays promptly to three jets. No significant excess over the Standard Model expectation is observed and exclusion limits at the 95% confidence level are extracted. Gluinos with masses up to 1800 GeV are excluded when decaying directly to three jets. In the cascade scenario, gluinos with masses up to 2340 GeV are excluded for a neutralino with mass up to 1250 GeV

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+→Ό+ÎœW^+ \rightarrow \mu^+\nu and W−→Ό−ΜW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations

    Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. The search is based on proton-proton collision data at a centre-of-mass energy s√=8 TeV collected in 2012, corresponding to an integrated luminosity of 20 fb−1. No significant excess above the Standard Model expectation is observed. Limits are set on supersymmetric particle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV. Limits are also set on the parameters of a minimal universal extra dimension model, excluding a compactification radius of 1/R c = 950 GeV for a cut-off scale times radius (ΛR c) of approximately 30

    Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +cÂŻÂŻ)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−sÂŻÂŻÂŻ quark asymmetry
    • 

    corecore