287 research outputs found
Fresh air in the 21st century?
Ozone is an air quality problem today for much of the world's population. Regions can exceed the ozone air quality standards (AQS) through a combination of local emissions, meteorology favoring pollution episodes, and the clean-air baseline levels of ozone upon which pollution builds. The IPCC 2001 assessment studied a range of global emission scenarios and found that all but one projects increases in global tropospheric ozone during the 21st century. By 2030, near-surface increases over much of the northern hemisphere are estimated to be about 5 ppb (+2 to +7 ppb over the range of scenarios). By 2100 the two more extreme scenarios project baseline ozone increases of >20 ppb, while the other four scenarios give changes of -4 to +10 ppb. Even modest increases in the background abundance of tropospheric ozone might defeat current AQS strategies. The larger increases, however, would gravely threaten both urban and rural air quality over most of the northern hemisphere
Maintaining yeast viability in continuous primary beer fermentation
Continuous fermentation is a long known and vastly studied process. The use of immobilized cell technology (ICT) is exploited in a significant number of studies owing to the associated high volumetric productivity, time savings and low capital demand. This work was aimed at solving one of the most relevant obstacles to implementing ICT on a large scale in beer fermentations, namely the control of biomass and the maintenance of cell viability in a gas-lift bioreactor. For this purpose, foam fractionation by skimming was proposed as a tool for control of continuous biomass concentration. The consequences of foaming on lignocellulosic yeast carrier losses were assessed and discussed. A steady consumption of sugars from wort, as well as consistent ethanol production, were achieved. The viability of the suspended cells in the reactor was compared with that of the cell population in the foam using flow cytometry. Results suggest that foam might be used as a promising tool to skim non-viable biomass out of the gas-lift reactor, thus ensuring the maintenance of a cell culture with optimum viability. Copyright © 2014 The Institute of Brewing & DistillingEduardo Pires gratefully acknowledges the Fundacao para a Ciencia e a Tecnologia (FCT, Portugal) for PhD fellowship support (SFRH/BD/61777/2009) and Cristina Ribeiro from the Centre of Molecular and Environmental Biology/Department of Biology for technical support. This work was also supported by FEDER through POFC - COMPETE and by national funds from FCT through the project PEst-C/BIA/UI4050/2011. The materials supplied by UNICER Bebidas, S.A. (S. Mamede de Infesta, Portugal) are gratefully acknowledged. The financial contributions of the EU FP7 project EcoBioCAP - Ecoefficient Biodegradable Composite Advanced Packaging, grant agreement no. 265669 as well as of the Grant Agency of the Czech Republic (project GACR P503/12/1424) are also gratefully acknowledged
A mother's sacrifice: what is she keeping for herself?
Individual cells of the budding yeast, Saccharomyces cerevisiae, have a limited life span and undergo a form of senescence termed replicative aging. Replicative life span is defined as the number of daughter cells produced by a yeast mother cell before she ceases dividing. Replicative aging is asymmetric: a mother cell ages but the age of her daughter cells is 'reset' to zero. Thus, one or more senescence factors have been proposed to accumulate asymmetrically between mother and daughter yeast cells and lead to mother-specific replicative senescence once a crucial threshold has been reached. Here we evaluate potential candidates for senescence factors and age-associated phenotypes and discuss potential mechanisms underlying the asymmetry of replicative aging in budding yeast
The effects of amisulpride on five dimensions of psychopathology in patients with schizophrenia: a prospective open- label study
BACKGROUND: The efficacy of antipsychotics can be evaluated using the dimensional models of schizophrenic symptoms. The D(2)/D(3)-selective antagonist amisulpride has shown similar efficacy and tolerability to other atypical antipsychotics. The aim of the present study was to determine the efficacy of amisulpride on the dimensional model of schizophrenic symptoms and tolerability in latin schizophrenic patients. METHOD: Eighty schizophrenic patients were enrolled and 70 completed a prospective open-label 3-month study with amisulpride. The schizophrenic symptoms, psychosocial functioning and side-effects were evaluated with standardized scales. RESULTS: The patients showed significant improvement in the five dimensions evaluated. Amisulpride (median final dose 357.1 mg/d) was well-tolerated without treatment-emergent extrapyramidal side-effects. CONCLUSION: Amisulpride showed efficacy on different psychopathological dimensions and was well tolerated, leading to consider this drug a first line choice for the treatment of schizophrenia
High gravity primary continuous beer fermentation using flocculent yeast biomass
The current work assessed a new immobilized cell reactor system throughout a long-term (54 days) continuous primary fermentation of lager-type wort of high specific gravity. The experiment was performed in a 4 L airlift bioreactor and immobilization of biomass was attained solely by flocculation. Despite the constant liquid agitation and washout of biomass, up to 53 g dry wt/L of yeast remained immobilized in the system. Two types of beer were produced without interrupting the reactor, based on two types of wort: a Pilsener type with high specific gravity of 15.6 ± 0.3°P; and a dark lager wort with specific gravity of 14.4 ± 0.03°P. Even during the inlet of high gravity wort, the desired attenuation was achieved without the need for either recirculation or an auxiliary second stage bioreactor. The specific saccharide consumption rate was kept around 7.9 ± 0.4 g/L/h and ethanol productivity oscillated at 3.36 ± 0.2 g/L/h for nearly a month. During this period the volumetric productivity of the current bioreactor reached 1.6 L beer/L/day. The green beers produced from the Pilsener and dark lager worts met the standards of regular finished primary beer fermentation. The productivity of diacetyl through the entire experiment could be correlated to the free amino nitrogen consumption rate. Copyright © 2014 The Institute of Brewing & DistillingEduardo Pires gratefully acknowledges the Fundacao para a Ciencia e a Tecnologia (FCT, Portugal) for PhD fellowship support (SFRH/BD/61777/2009). All materials supplied by UNICER Bebidas de Portugal, S.A. (S. Mamede de Infesta, Portugal) as well as the technical support of company members Sonia Meireles and Helena Cunha are acknowledged. The financial contributions of the Grant Agency of the Czech Republic (project GACR P503/12/1424) are also gratefully acknowledged. The authors thank also the Foundation for Science and Technology (FCT-Portugal) for their support through the Strategic Project PEst-OE/EQB/LA0023/2013, also for the PEst-OE/BIA/UI4050/2014; and the Project 'BioInd-Biotechnology and Bioengineering for improved Industrial and Agro-Food processes', ref. NORTE-07-0124-FEDER-000028 Co-funded by the Programa Operacional Regional do Norte (ON.2 - O Novo Norte), QREN, FEDER
Phenotypic Landscape of Saccharomyces cerevisiae during Wine Fermentation: Evidence for Origin-Dependent Metabolic Traits
The species Saccharomyces cerevisiae includes natural strains, clinical isolates, and a large number of strains used in human activities. The aim of this work was to investigate how the adaptation to a broad range of ecological niches may have selectively shaped the yeast metabolic network to generate specific phenotypes. Using 72 S. cerevisiae strains collected from various sources, we provide, for the first time, a population-scale picture of the fermentative metabolic traits found in the S. cerevisiae species under wine making conditions. Considerable phenotypic variation was found suggesting that this yeast employs diverse metabolic strategies to face environmental constraints. Several groups of strains can be distinguished from the entire population on the basis of specific traits. Strains accustomed to growing in the presence of high sugar concentrations, such as wine yeasts and strains obtained from fruits, were able to achieve fermentation, whereas natural yeasts isolated from “poor-sugar” environments, such as oak trees or plants, were not. Commercial wine yeasts clearly appeared as a subset of vineyard isolates, and were mainly differentiated by their fermentative performances as well as their low acetate production. Overall, the emergence of the origin-dependent properties of the strains provides evidence for a phenotypic evolution driven by environmental constraints and/or human selection within S. cerevisiae
Genomic Structure of and Genome-Wide Recombination in the Saccharomyces cerevisiae S288C Progenitor Isolate EM93
The diploid isolate EM93 is the main ancestor to the widely used Saccharomyces cerevisiae haploid laboratory strain, S288C. In this study, we generate a high-resolution overview of the genetic differences between EM93 and S288C. We show that EM93 is heterozygous for >45,000 polymorphisms, including large sequence polymorphisms, such as deletions and a Saccharomyces paradoxus introgression. We also find that many large sequence polymorphisms (LSPs) are associated with Ty-elements and sub-telomeric regions. We identified 2,965 genetic markers, which we then used to genotype 120 EM93 tetrads. In addition to deducing the structures of all EM93 chromosomes, we estimate that the average EM93 meiosis produces 144 detectable recombination events, consisting of 87 crossover and 31 non-crossover gene conversion events. Of the 50 polymorphisms showing the highest levels of non-crossover gene conversions, only three deviated from parity, all of which were near heterozygous LSPs. We find that non-telomeric heterozygous LSPs significantly reduce meiotic recombination in adjacent intervals, while sub-telomeric LSPs have no discernable effect on recombination. We identified 203 recombination hotspots, relatively few of which are hot for both non-crossover gene conversions and crossovers. Strikingly, we find that recombination hotspots show limited conservation. Some novel hotspots are found adjacent to heterozygous LSPs that eliminate other hotspots, suggesting that hotspots may appear and disappear relatively rapidly
Enabling precision manufacturing of active pharmaceutical ingredients: workflow for seeded cooling continuous crystallisations
Continuous manufacturing is widely used for the production of commodity products. Currently, it is attracting increasing interest from the pharmaceutical industry and regulatory agencies as a means to provide a consistent supply of medicines. Crystallisation is a key operation in the isolation of the majority of pharmaceuticals and has been demonstrated in a continuous manner on a number of compounds using a range of processing technologies and scales. Whilst basic design principles for crystallisations and continuous processes are known, applying these in the context of rapid pharmaceutical process development with the associated constraints of speed to market and limited material availability is challenging. A systematic approach for continuous crystallisation process design is required to avoid the risk that decisions made on one aspect of the process conspire to make a later development step or steps, either for crystallisation or another unit operation, more difficult. In response to this industry challenge, an innovative system-wide approach to decision making has been developed to support rapid, systematic, and efficient continuous seeded cooling crystallisation process design. For continuous crystallisation, the goal is to develop and operate a robust, consistent process with tight control of particle attributes. Here, an innovative system-based workflow is presented that addresses this challenge. The aim, methodology, key decisions and output at each at stage are defined and a case study is presented demonstrating the successful application of the workflow for the rapid design of processes to produce kilo quantities of product with distinct, specified attributes suited to the pharmaceutical development environment. This work concludes with a vision for future applications of workflows in continuous manufacturing development to achieve rapid performance based design of pharmaceuticals
Salmonella – the ultimate insider. Salmonella virulence factors that modulate intracellular survival
Salmonella enterica serovar Typhimurium is a common facultative intracellular pathogen that causes food-borne gastroenteritis in millions of people worldwide. Intracellular survival and replication are important virulence determinants and the bacteria can be found in a variety of phagocytic and non-phagocytic cells in vivo. Invasion of host cells and intracellular survival are dependent on two type III secretion systems, T3SS1 and T3SS2, each of which translocates a distinct set of effector proteins. However, other virulence factors including ion transporters, superoxide dismutase, flagella and fimbriae are also involved in accessing and utilizing the intracellular niche
Metagenomic approaches to investigate the contribution of the vineyard environment to the quality of wine fermentation : potentials and difficulties
The winemaking is a complex process that begins in the vineyard and ends at consumption moment. Recent reports have shown the relevance of microbial populations in the definition of the regional organoleptic and sensory characteristics of a wine. Metagenomic approaches, allowing the exhaustive identification of microorganisms present in complex samples, have recently played a fundamental role in the dissection of the contribution of the vineyard environment to wine fermentation. Systematic approaches have explored the impact of agronomical techniques, vineyard topologies, and climatic changes on bacterial and fungal populations found in the vineyard and in fermentations, also trying to predict or extrapolate the effects on the sensorial characteristics of the resulting wine. This review is aimed at highlighting the major technical and experimental challenges in dissecting the contribution of the vineyard and native environments microbiota to the wine fermentation process, and how metagenomic approaches can help in understanding microbial fluxes and selections across the environments and specimens related to wine fermentation
- …