562 research outputs found

    A P-type ATPase importer that discriminates between essential and toxic transition metals

    Get PDF
    Transition metals, although being essential cofactors in many physiological processes, are toxic at elevated concentrations. Among the membrane-embedded transport proteins that maintain appropriate intracellular levels of transition metals are ATP-driven pumps belonging to the P-type ATPase superfamily. These metal transporters may be differentiated according to their substrate specificities, where the majority of pumps can extrude either silver and copper or zinc, cadmium, and lead. In the present report, we have established the substrate specificities of nine previously uncharacterized prokaryotic transition-metal P-type ATPases. We find that all of the newly identified exporters indeed fall into one of the two above-mentioned categories. In addition to these exporters, one importer, Pseudomonas aeruginosa Q9I147, was also identified. This protein, designated HmtA (heavy metal transporter A), exhibited a different substrate recognition profile from the exporters. In vivo metal susceptibility assays, intracellular metal measurements, and transport experiments all suggest that HmtA mediates the uptake of copper and zinc but not of silver, mercury, or cadmium. The substrate selectivity of this importer ensures the high-affinity uptake of essential metals, while avoiding intracellular contamination by their toxic counterparts

    Interaction of Acinetobacter baumannii with Human Serum Albumin: Does the Host Determine the Outcome?

    Get PDF
    Acinetobacter baumannii has become a serious threat to human health due to its extreme antibiotic resistance, environmental persistence, and capacity to survive within the host. Two A. baumannii strains, A118 and AB5075, commonly used as model systems, and three carbapenem-resistant strains, which are becoming ever more dangerous due to the multiple drugs they can resist, were exposed to 3.5% human serum albumin (HSA) and human serum (HS) to evaluate their response with respect to antimicrobial resistance, biofilm formation, and quorum sensing, all features responsible for increasing survival and persistence in the environment and human body. Expression levels of antibiotic resistance genes were modified differently when examined in different strains. The cmlA gene was upregulated or downregulated in conditions of exposure to 3.5% HSA or HS depending on the strain. Expression levels of pbp1 and pbp3 tended to be increased by the presence of HSA and HS, but the effect was not seen in all strains. A. baumannii A118 growing in the presence of HS did not experience increased expression of these genes. Aminoglycoside-modifying enzymes were also expressed at higher or lower levels in the presence of HSA or HS. Still, the response was not uniform; in some cases, expression was enhanced, and in other cases, it was tapered. While A. baumannii AB5075 became more susceptible to rifampicin in the presence of 3.5% HSA or HS, strain A118 did not show any changes. Expression of arr2, a gene involved in resistance to rifampicin present in A. baumannii AMA16, was expressed at higher levels when HS was present in the culture medium. HSA and HS reduced biofilm formation and production of N-Acyl Homoserine Lactone, a compound intimately associated with quorum sensing. In conclusion, HSA, the main component of HS, stimulates a variety of adaptative responses in infecting A. baumannii strains.Fil: Pimentel, Camila. University of California; Estados UnidosFil: Le, Casin. University of California; Estados UnidosFil: Tuttobene, Marisel Romina. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂ­micas y FarmacĂŠuticas; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂŠcnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Rosario; ArgentinaFil: Subils, TomĂĄs. Consejo Nacional de Investigaciones CientĂ­ficas y TĂŠcnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Rosario. Instituto de Procesos BiotecnolĂłgicos y QuĂ­micos Rosario. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂ­micas y FarmacĂŠuticas. Instituto de Procesos BiotecnolĂłgicos y QuĂ­micos Rosario; ArgentinaFil: Papp Wallace, Krisztina M.. Case Western Reserve University School of Medicine; Estados UnidosFil: Bonomo, Robert A.. Case Western Reserve University School of Medicine; Estados UnidosFil: Tolmasky, Marcelo E.. University of California; Estados UnidosFil: Ramirez, Maria Soledad. University of California; Estados Unido

    Molecular Investigations of PenA-mediated β-lactam Resistance in Burkholderia pseudomallei

    Get PDF
    Burkholderia pseudomallei is the etiological agent of melioidosis. Because of the bacterium’s intrinsic resistance and propensity to establish latent infections, melioidosis therapy is complicated and prolonged. Newer generation β-lactams, specifically ceftazidime, are used for acute phase therapy, but resistance to this cephalosporin has been observed. The chromosomally encoded penA gene encodes a putative twin arginine translocase (TAT)-secreted β-lactamase, and penA mutations have been implicated in ceftazidime resistance in clinical isolates. However, the role of PenA in resistance has not yet been systematically studied in isogenetic B. pseudomallei mutant backgrounds. We investigated the effects of penA deletion, point mutations, and up-regulation, as well as tat operon deletion and PenA TAT-signal sequence mutations. These experiments were made possible by employing a B. pseudomallei strain that is excluded from Select Agent regulations. Deletion of penA significantly (>4-fold) reduced the susceptibility to six of the nine β-lactams tested and ≥16-fold for ampicillin, amoxicillin, and carbenicillin. Overexpression of penA by single-copy, chromosomal expression of the gene under control of the inducible Ptac promoter, increased resistance levels for all β-lactams tested 2- to 10-fold. Recreation of the C69Y and P167S PenA amino acid substitutions previously observed in resistant clinical isolates increased resistance to ceftazidime by ≥85- and 5- to 8-fold, respectively. Similarly, a S72F substitution resulted in a 4-fold increase in resistance to amoxicillin and clavulanic acid. Susceptibility assays with PenA TAT-signal sequence and ΔtatABC mutants, as well as Western blot analysis, confirmed that PenA is a TAT secreted enzyme and not periplasmic but associated with the spheroplastic cell fraction. Lastly, we determined that two LysR-family regulators encoded by genes adjacent to penA do not play a role in transcriptional regulation of penA expression

    Ion torrent-based transcriptional assessment of a Corynebacterium pseudotuberculosis equi strain reveals denaturing high-performance liquid chromatography a promising rRNA depletion method

    Get PDF
    Corynebacterium pseudotuberculosis equi is a Gram-positive pathogenic bacterium which affects a variety of hosts. Besides the great economic losses it causes to horse-breeders, this organism is also known to be an important infectious agent to cattle and buffaloes. As an outcome of the efforts in characterizing the molecular basis of its virulence, several complete genome sequences were made available in recent years, enabling the large-scale assessment of genes throughout distinct isolates. Meanwhile, the RNA-seq stood out as the technology of choice for comprehensive transcriptome studies, which may bring valuable information regarding active genomic regions, despite of the still impeditive associated costs. In an attempt to increase the use of generated reads per instrument run, by effectively eliminating unwanted rRNAs from total RNA samples without relying on any commercially available kits, we applied denaturing high-performance liquid chromatography (DHPLC) as an alternative method to assess the transcriptional profile of C. pseudotuberculosis. We have found that the DHPLC depletion method, allied to Ion Torrent sequencing, allows mapping of transcripts in a comprehensive way and identifying novel transcripts when a de novo approach is used. These data encourage us to use DHPLC in future transcriptional evaluations in C. pseudotuberculosis

    Reclaiming The Efficacy of β-Lactam–β-Lactamase Inhibitor Combinations: Avibactam Restores The Susceptibility of CMY-2-Producing Escherichia Coli to Ceftazidime

    Get PDF
    CMY-2 is a plasmid-encoded Ambler class C cephalosporinase that is widely disseminated in Enterobacteriaceae and is responsible for expanded-spectrum cephalosporin resistance. As a result of resistance to both ceftazidime and β-lactamase inhibitors in strains carrying blaCMY, novel β-lactam–β-lactamase inhibitor combinations are sought to combat this significant threat to β-lactam therapy. Avibactam is a bridged diazabicyclo [3.2.1]octanone non-β-lactam β-lactamase inhibitor in clinical development that reversibly inactivates serine β-lactamases. To define the spectrum of activity of ceftazidime-avibactam, we tested the susceptibilities of Escherichia coli clinical isolates that carry blaCMY-2 or blaCMY-69 and investigated the inactivation kinetics of CMY-2. Our analysis showed that CMY-2-containing clinical isolates of E. coli were highly susceptible to ceftazidime-avibactam (MIC90, ≤0.5 mg/liter); in comparison, ceftazidime had a MIC90 of \u3e128 mg/liter. More importantly, avibactam was an extremely potent inhibitor of CMY-2 β-lactamase, as demonstrated by a second-order onset of acylation rate constant (k2/K) of (4.9 ± 0.5) × 104 M−1 s−1 and the off-rate constant (koff) of (3.7 ± 0.4) ×10−4 s−1. Analysis of the reaction of avibactam with CMY-2 using mass spectrometry to capture reaction intermediates revealed that the CMY-2–avibactam acyl-enzyme complex was stable for as long as 24 h. Molecular modeling studies raise the hypothesis that a series of successive hydrogen-bonding interactions occur as avibactam proceeds through the reaction coordinate with CMY-2 (e.g., T316, G317, S318, T319, S343, N346, and R349). Our findings support the microbiological and biochemical efficacy of ceftazidime-avibactam against E. coli containing plasmid-borne CMY-2 and CMY-69

    Reclaiming The Efficacy of β-Lactam–β-Lactamase Inhibitor Combinations: Avibactam Restores The Susceptibility of CMY-2-Producing Escherichia Coli to Ceftazidime

    Get PDF
    CMY-2 is a plasmid-encoded Ambler class C cephalosporinase that is widely disseminated in Enterobacteriaceae and is responsible for expanded-spectrum cephalosporin resistance. As a result of resistance to both ceftazidime and β-lactamase inhibitors in strains carrying blaCMY, novel β-lactam–β-lactamase inhibitor combinations are sought to combat this significant threat to β-lactam therapy. Avibactam is a bridged diazabicyclo [3.2.1]octanone non-β-lactam β-lactamase inhibitor in clinical development that reversibly inactivates serine β-lactamases. To define the spectrum of activity of ceftazidime-avibactam, we tested the susceptibilities of Escherichia coli clinical isolates that carry blaCMY-2 or blaCMY-69 and investigated the inactivation kinetics of CMY-2. Our analysis showed that CMY-2-containing clinical isolates of E. coli were highly susceptible to ceftazidime-avibactam (MIC90, ≤0.5 mg/liter); in comparison, ceftazidime had a MIC90 of \u3e128 mg/liter. More importantly, avibactam was an extremely potent inhibitor of CMY-2 β-lactamase, as demonstrated by a second-order onset of acylation rate constant (k2/K) of (4.9 ± 0.5) × 104 M−1 s−1 and the off-rate constant (koff) of (3.7 ± 0.4) ×10−4 s−1. Analysis of the reaction of avibactam with CMY-2 using mass spectrometry to capture reaction intermediates revealed that the CMY-2–avibactam acyl-enzyme complex was stable for as long as 24 h. Molecular modeling studies raise the hypothesis that a series of successive hydrogen-bonding interactions occur as avibactam proceeds through the reaction coordinate with CMY-2 (e.g., T316, G317, S318, T319, S343, N346, and R349). Our findings support the microbiological and biochemical efficacy of ceftazidime-avibactam against E. coli containing plasmid-borne CMY-2 and CMY-69

    Effect of Serum Albumin, a Component of Human Pleural Fluid, on Transcriptional and Phenotypic Changes on Acinetobacter baumannii A118

    Get PDF
    Acinetobacter baumannii is a multidrug-resistant pathogen that causes numerous infections associated with high mortality rates. Exposure to human body fluids, such as human pleural fluid (HPF) and human serum, modulates gene expression in A. baumannii, leading to changes in its pathogenic behavior. Diverse degrees of effects at the transcriptional level were observed in susceptible and carbapenem-resistant strains. The transcriptional analysis of AB5075, a hyper-virulent and extensively drug-resistant strain showed changes in genes associated with quorum sensing, quorum quenching, fatty acids metabolism, and high-efficient iron uptake systems. In addition, the distinctive role of human serum albumin (HSA) as a critical component of HPF was evidenced. In the present work, we used model strain to analyze more deeply into the contribution of HSA in triggering A. baumannii’s response. By qRT-PCR analysis, changes in the expression level of genes associated with quorum sensing, biofilm formation, and phenylacetic acid pathway were observed. Phenotypic approaches confirmed the transcriptional response. HSA, a predominant component of HPF, can modulate the expression and behavior of genes not only in a hyper-virulent and extensively drug-resistant A. baumannii model, but also in other strains with a different degree of susceptibility and pathogenicity.Fil: Le, Casin. California State University; Estados UnidosFil: Pimentel, Camila. California State University; Estados UnidosFil: Tuttobene, Marisel Romina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Subils, Tomás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Procesos Biotecnológicos y Químicos Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Procesos Biotecnológicos y Químicos Rosario; ArgentinaFil: Papp Wallace, Krisztina M.. Case Western Reserve University School of Medicine; Estados UnidosFil: Bonomo, Robert A.. Case Western Reserve University School of Medicine; Estados UnidosFil: Actis, Luis A.. Miami University; Estados UnidosFil: Tolmasky, Marcelo E.. California State University; Estados UnidosFil: Ramirez, Maria Soledad. California State University; Estados Unido

    Structural and biochemical characterization of the novel CTXM-151 extended-spectrum β-lactamase and its inhibition by avibactam

    Get PDF
    The diazabicyclooctane (DBO) inhibitor avibactam (AVI) reversibly inactivates most serine β-lactamases, including the CTX-M β-lactamases. Currently, more than 230 unique CTX-M members distributed in five clusters with less than 5% amino acid sequence divergence within each group have been described. Recently, a variant named CTX-M-151 was isolated from a Salmonella enterica subsp. enterica serovar Choleraesuis strain in Japan. This variant possesses a low degree of amino acid identity with the other CTX-Ms (63.2% to 69.7% with respect to the mature proteins), and thus it may represent a new subgroup within the family. CTX-M-151 hydrolyzes ceftriaxone better than ceftazidime (kcat/Km values 6,000-fold higher), as observed with CTX-Ms. CTX-M-151 is well inhibited by mechanism-based inhibitors like clavulanic acid (inactivation rate [kinact]/inhibition constant [Ki] = 0.15μM-1 · s-1). For AVI, the apparent inhibition constant (Ki app), 0.4mM, was comparable to that of KPC-2; the acylation rate (k2/K) (37,000 M-1 · s-1) was lower than that for CTX-M-15, while the deacylation rate (koff) (0.0015 s21) was 2- to 14-fold higher than those of other class A β-lactamases. The structure of the CTX-M-151/AVI complex (1.32 Å) reveals that AVI adopts a chair conformation with hydrogen bonds between the AVI carbamate and Ser70 and Ser237 at the oxyanion hole. Upon acylation, the side chain of Lys73 points toward Ser130, which is associated with the protonation of Glu166, supporting the role of Lys73 in the proton relay pathway and Glu166 as the general base in deacylation. To our knowledge, this is the first chromosomally encoded CTX-M in Salmonella Choleraesuis that shows similar hydrolytic preference toward cefotaxime (CTX) and ceftriaxone (CRO) to that toward ceftazidime (CAZ).Fil: Ghiglione, Barbara. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquimica. Instituto de Investigaciones En Bacteriologia y Virologia Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaFil: Rodríguez, María Margarita. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquimica. Instituto de Investigaciones En Bacteriologia y Virologia Molecular; ArgentinaFil: Brunetti, Florencia Lourdes. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquimica. Instituto de Investigaciones En Bacteriologia y Virologia Molecular; ArgentinaFil: Papp Wallace, Krisztina M.. Case Western Reserve University; Estados UnidosFil: Yoshizumi, Ayumi. Toho University; JapónFil: Ishii, Yoshikazu. Toho University; JapónFil: Bonomo, Robert A.. Case Western Reserve University; Estados UnidosFil: Gutkind, Gabriel Osvaldo. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquimica. Instituto de Investigaciones En Bacteriologia y Virologia Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaFil: Klinke, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Power, Pablo. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquimica. Instituto de Investigaciones En Bacteriologia y Virologia Molecular; Argentin

    Activity of ceftolozane/tazobactam against surveillance and ‘problem’ Enterobacteriaceae, Pseudomonas aeruginosa and non-fermenters from the British Isles

    Get PDF
    Background: We assessed the activity of ceftolozane/tazobactam against consecutive isolates collected in the BSAC Bacteraemia Surveillance from 2011 to 2015 and against ‘problem’ isolates sent to the UK national reference laboratory from July 2015, when routine testing began. Methods: Susceptibility testing was by BSAC agar dilution with resistance mechanisms identified by PCR and interpretive reading. Results: Data were reviewed for 6080 BSAC surveillance isolates and 5473 referred organisms. Ceftolozane/tazobactam had good activity against unselected ESBL producers in the BSAC series, but activity was reduced against ertapenem-resistant ESBL producers, which were numerous among reference submissions. AmpC-derepressed Enterobacter spp. were widely resistant, but Escherichia coli with raised chromosomal AmpC frequently remained susceptible, as did Klebsiella pneumoniae with acquired DHA-1-type AmpC. Carbapenemase-producing Enterobacteriaceae were mostly resistant, except for ceftazidime-susceptible isolates with OXA-48-like enzymes. Ceftolozane/tazobactam was active against 99.8% of the BSAC Pseudomonas aeruginosa isolates; against referred P. aeruginosa it was active against 99.7% with moderately raised efflux, 94.7% with strongly raised efflux and 96.6% with derepressed AmpC. Resistance in P. aeruginosa was largely confined to isolates with metallo-β-lactamases (MBLs) or ESBLs. MICs for referred Burkholderia spp. and Stenotrophomonas maltophilia were 2–4-fold lower than those of ceftazidime. Conclusions: Ceftolozane/tazobactam is active against ESBL-producing Enterobacteriaceae; gains against other problem Enterobacteriaceae groups were limited. Against P. aeruginosa it overcame the two most prevalent mechanisms (up-regulated efflux and derepressed AmpC) and was active against 51.9% of isolates non-susceptible to all other β-lactams, rising to 80.9% if ESBL and MBL producers were excluded

    Structures of FOX-4 cephamycinase in complex with transition-state analog inhibitors

    Get PDF
    Boronic acid transition-state analog inhibitors (BATSIs) are partners with β-lactam antibiotics for the treatment of complex bacterial infections. Herein, microbiological, biochemical, and structural findings on four BATSIs with the FOX-4 cephamycinase, a class C β-lactamase that rapidly hydrolyzes cefoxitin, are revealed. FOX-4 is an extended-spectrum class C cephalosporinase that demonstrates conformational flexibility when complexed with certain ligands. Like other β-lactamases of this class, studies on FOX-4 reveal important insights into structure–activity relationships. We show that SM23, a BATSI, shows both remarkable flexibility and affinity, binding similarly to other β-lactamases, yet retaining an IC50 value < 0.1 μM. Our analyses open up new opportunities for the design of novel transition-state analogs of class C enzymes
    • …
    corecore