41 research outputs found

    X-ray Crystallographic Characterization of the Co(II)-substituted Tris-bound Form of the Aminopeptidase from \u3cem\u3eAeromonas proteolytica\u3c/em\u3e

    Get PDF
    The X-ray crystal structure of the Co(II)-loaded form of the aminopeptidase from Aeromonas proteolytica ([CoCo(AAP)]) was solved to 2.2 Å resolution. [CoCo(AAP)] folds into an α/ÎČ globular domain with a twisted ÎČ-sheet hydrophobic core sandwiched between α-helices, identical to [ZnZn(AAP)]. Co(II) binding to AAP does not introduce any major conformational changes to the overall protein structure and the amino acid residues ligated to the dicobalt(II) cluster in [CoCo(AAP)] are the same as those in the native Zn(II)-loaded structure with only minor perturbations in bond lengths. The Co(II)–Co(II) distance is 3.3 Å. Tris(hydroxymethyl)aminomethane (Tris) coordinates to the dinuclear Co(II) active site of AAP with one of the Tris hydroxyl oxygen atoms (O4) forming a single oxygen atom bridge between the two Co(II) ions. This is the only Tris atom coordinated to the metals with Co1–O and Co2–O bonds distances of 2.2 and 1.9 Å, respectively. Each of the Co(II) ions resides in a distorted trigonal bipyramidal geometry. This important structure bridges the gap between previous structural and spectroscopic studies performed on AAP and is discussed in this context

    Mechanism of the Quorum-Quenching Lactonase (AiiA) from Bacillus thuringiensis. 1. Product-Bound Structures†‡

    Get PDF
    ABSTRACT: The N-acyl-L-homoserine lactone hydrolases (AHL lactonases) have attracted considerable attention because of their ability to quench AHL-mediated quorum-sensing pathways in Gram-negative bacteria and because of their relation to other enzymes in the metallo--lactamase superfamily. To elucidate the detailed catalytic mechanism of AHL lactonase, mutations are made on residues that presumably contribute to substrate binding and catalysis. Steady-state kinetic studies are carried out on both the wild-type and mutant enzymes using a spectrum of substrates. Two mutations, Y194F and D108N, present significant effects on the overall catalysis. On the basis of a high-resolution structural model of the enzyme-product complex, a hybrid quantum mechanical/molecular mechanical method is used to model the substrate binding orientation and to probe the effect of the Y194F mutation. Combining all experimental and computational results, we propose a detailed mechanism for the ring-opening hydrolysis of AHL substrates as catalyzed by the AHL lactonase from Bacillus thuringiensis. Several features of the mechanism that are also found in related enzymes are discussed and may help to define an evolutionary thread that connects the hydrolytic enzymes of this mechanistically diverse superfamily. Proteins in the metallo--lactamase superfamily span all three domains of life and are quite diverse, encompassin

    Kinetic, Spectroscopic, and X-ray Crystallographic Characterization of the Functional E151H Aminopeptidase from \u3cem\u3eAeromonas proteolytica\u3c/em\u3e

    Get PDF
    Glutamate151 (E151) has been shown to be catalytically essential for the aminopeptidase from Vibrio proteolyticus (AAP). E151 acts as the general acid/base during the catalytic mechanism of peptide hydrolysis. However, a glutamate residue is not the only residue capable of functioning as a general acid/base during catalysis for dinuclear metallohydrolases. Recent crystallographic characterization of the d-aminopeptidase from Bacillus subtilis (DppA) revealed a histidine residue that resides in an identical position to E151 in AAP. Because the active-site ligands for DppA and AAP are identical, AAP has been used as a model enzyme to understand the mechanistic role of H115 in DppA. Substitution of E151 with histidine resulted in an active AAP enzyme exhibiting a kcat value of 2.0 min-1, which is over 2000 times slower than r AAP (4380 min-1). ITC experiments revealed that ZnII binds 330 and 3 times more weakly to E151H-AAP compared to r-AAP. UV−vis and EPR spectra of CoII-loaded E151H-AAP indicated that the first metal ion resides in a hexacoordinate/pentacoordinate equilibrium environment, whereas the second metal ion is six-coordinate. pH dependence of the kinetic parameters kcat and Km for the hydrolysis of l-leucine p-nitroanilide (l-pNA) revealed a change in an ionization constant in the enzyme−substrate complex from 5.3 in r-AAP to 6.4 in E151H-AAP, consistent with E151 in AAP being the active-site general acid/base. Proton inventory studies at pH 8.50 indicate the transfer of one proton in the rate-limiting step of the reaction. Moreover, the X-ray crystal structure of [ZnZn(E151H-AAP)] has been solved to 1.9 Å resolution, and alteration of E151 to histidine does not introduce any major conformational changes to the overall protein structure or the dinuclear ZnII active site. Therefore, a histidine residue can function as the general acid/base in hydrolysis reactions of peptides and, through analogy of the role of E151 in AAP, H115 in DppA likely shuttles a proton to the leaving group of the substrate

    Carotenoid Distribution in Living Cells of Haematococcus pluvialis (Chlorophyceae)

    Get PDF
    Haematococcus pluvialis is a freshwater unicellular green microalga belonging to the class Chlorophyceae and is of commercial interest for its ability to accumulate massive amounts of the red ketocarotenoid astaxanthin (3,3â€Č-dihydroxy-ÎČ,ÎČ-carotene-4,4â€Č-dione). Using confocal Raman microscopy and multivariate analysis, we demonstrate the ability to spectrally resolve resonance–enhanced Raman signatures associated with astaxanthin and ÎČ-carotene along with chlorophyll fluorescence. By mathematically isolating these spectral signatures, in turn, it is possible to locate these species independent of each other in living cells of H. pluvialis in various stages of the life cycle. Chlorophyll emission was found only in the chloroplast whereas astaxanthin was identified within globular and punctate regions of the cytoplasmic space. Moreover, we found evidence for ÎČ-carotene to be co-located with both the chloroplast and astaxanthin in the cytosol. These observations imply that ÎČ-carotene is a precursor for astaxanthin and the synthesis of astaxanthin occurs outside the chloroplast. Our work demonstrates the broad utility of confocal Raman microscopy to resolve spectral signatures of highly similar chromophores in living cells

    A low cortisol response to stress is associated with musculoskeletal pain combined with increased pain sensitivity in young adults: A longitudinal cohort study

    Get PDF
    Background: In this study, we investigated whether an abnormal hypothalamic-pituitary-adrenal (HPA) axis response to psychosocial stress at 18 years of age is associated with musculoskeletal (MS) pain alone and MS pain combined with increased pain sensitivity at 22 years of age. Methods: The study sample included 805 participants from the Western Australian Pregnancy Cohort (Raine) Study who participated in the Trier Social Stress Test (TSST) at age 18 years. Number of pain sites, pain duration, pain intensity and pain frequency were assessed at age 22 to measure severity of MS pain. Cold and pressure pain thresholds were determined at age 22. Group-based trajectory modeling was applied to establish cortisol response patterns based on the TSST. Logistic regression was used to study the association of TSST patterns with MS pain alone and MS pain combined with increased cold or pressure pain sensitivity, adjusted for relevant confounding factors. All analyses were stratified by sex. Results: The mean (standard deviation) age during the TSST was 18.3 (0.3) years, and during MS pain assessment it was 22.2 (0.6). Forty-five percent of the participants were female. Three cortisol response patterns were identified, with cluster 1 (34 % of females, 21 % of males) reflecting hyporesponse, cluster 2 (47 %, 54 %) reflecting intermediate response and cluster 3 (18 %, 24 %) reflecting hyperresponse of the HPA axis. MS pain was reported by 42 % of females and 33 % of males at age 22 years. Compared with females in cluster 2, females in cluster 1 had an increased likelihood of having any MS pain (odds ratio 2.3, 95 % confidence interval 1.0-5.0) and more severe MS pain (2.8, 1.1-6.8) if their cold pain threshold was above the median. In addition, females in cluster 1 had an increased likelihood (3.5, 1.3-9.7) of having more severe MS pain if their pressure pain threshold was below the median. No statistically significant associations were observed in males. Conclusions: This study suggests that a hyporesponsive HPA axis at age 18 years is associated with MS pain at 22 years in young females with increased pain sensitivity

    B Cell Antigen Presentation Promotes Th2 Responses and Immunopathology during Chronic Allergic Lung Disease

    Get PDF
    Background: The role of B cells in allergic asthma remains undefined. One mechanism by which B cells clearly contribute to allergic disease is via the production of specific immunoglobulin, and especially IgE. Cognate interactions with specific T cells result in T cell help for B cells, resulting in differentiation and immunoglobulin secretion. Proximal to (and required for) T cell-dependent immunoglobulin production, however, is antigen presentation by B cells. While interaction with T cells clearly has implications for B cell function and differentiation, this study investigated the role that B cells have in shaping the T cell response during chronic allergic lung disease. Methodology/Principal Findings: In these studies, we used a clinically relevant mouse model of chronic allergic lung disease to study the role of B cells and B cell antigen presentation in this disease. In these studies we present several novel findings: 1) Lung B cells from chronically allergen challenged mice up-regulated MHC II and costimulatory molecules CD40, CD80 and CD86. 2) Using in vitro studies, B cells from the lungs of allergen challenged mice could present antigen to T cells, as assessed by T cell proliferation and the preferential production of Th2 cytokines. 3) Following chronic allergen challenge, the levels of Th2 cytokines IL-4 and IL-5 in the lungs and airways were significantly attenuated in B cell 2/2 mice, relative to controls. 4) B cell driven Th2 responses and mucus hyper secretion in the lungs were dependent upon MHC II expression by B cells. Conclusions/Significance: Collectively, these results provide evidence for antigen presentation as a novel mechanism b

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    Supported self-management for patients with moderate to severe chronic obstructive pulmonary disease (COPD): an evidence synthesis and economic analysis

    Full text link
    corecore