60 research outputs found

    Ice cave reveals environmental forcing of long-term Pyrenean tree line dynamics

    Get PDF
    1. Tree lines are supposed to react sensitively to the current global change. However, the lack of a long-term (millennial) perspective on tree line shifts in the Pyrenees prevents understanding the underlying ecosystem dynamics and processes. 2. We combine multiproxy palaeoecological analyses (fossil pollen, spores, conifer stomata, plant macrofossils, and ordination) from an outstanding ice cave deposit located in the alpine belt c. 200 m above current tree line (Armeña-A294 Ice Cave, 2, 238 m a.s.l.), to assess for the first time in the Pyrenees, tree line dynamics, and ecosystem resilience to climate changes 5, 700–2, 200 (cal.) years ago. 3. The tree line ecotone was located at the cave altitude from 5, 700 to 4, 650 cal year bp, when vegetation consisted of open Pinus uncinata Ramond ex DC and Betula spp. Woodlands and timberline were very close to the site. Subsequently, tree line slightly raised and timberline reached the ice cave altitude, exceeding its today''s uppermost limit by c. 300–400 m during more than four centuries (4, 650 and 4, 200 cal year bp) at the end of the Holocene Thermal Maximum. After 4, 200 cal year bp, alpine tundra communities dominated by Dryas octopetala L. expanded while tree line descended, most likely as a consequence of the Neoglacial cooling. Prehistoric livestock raising likely reinforced climate cooling impacts at 3, 450–3, 250 cal year bp. Finally, a tree line ecotone developed around the cave that was on its turn replaced by alpine communities during the past 2, 000 years. 4. Synthesis. The long-term Pyrenean tree line ecotone sensitivity suggests that rising temperatures will trigger future P. uncinata and Betula expansions to higher elevations, replacing arctic–alpine plant species. Climate change is causing the rapid melting of the cave ice; rescue investigations would be urgently needed to exploit its unique ecological information

    Investigaciones paleobotánicas en la cuenca central del Duero

    Full text link
    El objetivo del trabajo es dar a conocer el estado actual de conocimientos científicos sobre el pasado del paisaje vegetal (Cuaternario final) en los territorios interiores no montanos de la depresión del Duero. Se recogen todos los yacimientos cuyo estudio ya ha concluido así como los que se encuentran en fase de investigación o prospección. Se precisa el tipo de informador en cada caso (polen, carbones, maderas, otros macrorrestos), el rango cronológico conocido hasta el momento así como el grado o proporción de trabajo realizado en cada yacimiento en relación con las previsiones efectuadas. Se aporta una síntesis-resumen de los principales resultados obtenidos hasta el momento y de los aspectos más concluyentes de los mismos en relación con la elaboración de modelos de evolución del paisaje vegetal posteriores al último máximo glacial en la Meseta norte. A nuestro juicio debe destacarse, como uno de los resultados más relevantes, el conocimiento ya afianzado de que los pinares de meseta han sido el elemento más significativo en amplios sectores del sur y este de la cuenca a lo largo de todo o gran parte del Holoceno, circunstancia que contrasta con todas las propuestas de paisaje pretérito (preantrópico) existentes antes de la realización de las prospecciones paleobotánicas

    Negative responses of highland pines to anthropogenic activities in inland Spain: a palaeoecological perspective

    Get PDF
    Palaeoecological evidence indicates that highland pines were dominant in extensive areas of the mountains of Central and Northern Iberia during the first half of the Holocene. However, following several millennia of anthropogenic pressure, their natural ranges are now severely reduced. Although pines have been frequently viewed as first-stage successional species responding positively to human disturbance, some recent palaeobotanical work has proposed fire disturbance and human deforestation as the main drivers of this vegetation turnover. To assess the strength of the evidence for this hypothesis and to identify other possible explanations for this scenario, we review the available information on past vegetation change in the mountains of northern inland Iberia. We have chosen data from several sites that offer good chronological control, including palynological records with microscopic charcoal data and sites with plant macro- and megafossil occurrence. We conclude that although the available long-term data are still fragmentary and that new methods are needed for a better understanding of the ecological history of Iberia, fire events and human activities (probably modulated by climate) have triggered the pine demise at different locations and different temporal scales. In addition, all palaeoxylological, palynological and charcoal results obtained so far are fully compatible with a rapid human-induced ecological change that could have caused a range contraction of highland pines in western Iberia

    New palynological data from the Late Pleistocene glacial refugium of South-West Iberia: The case of Doñana

    Get PDF
    S. Fernández, J.S. Carrión, J. Ochando, P. González-Sampériz, M. Munuera, G. Amorós, J.M. Postigo-Mijarra, C. Morales-Molino, P. García-Murillo, G. Jiménez-Moreno, J.A. López-Sáez, F. Jiménez-Espejo, L.M. Cáceres, J. Rodríguez-Vidal, G. Finlayson, S. Finlayson, C. Finlayson Erratum to “New palynological data from the Late Pleistocene glacial refugium of South-West Iberia: The case of Doñana” [Review of Palaeobotany and Palynology (2021) PALBO 104431] Review of Palaeobotany and Palynology, Volume 296, January 2022, Pages 104566The Doñana area in southern Iberia is one of the most renowned protected areas of Europe, mostly due to the diversity and value of its wetland ecosystems. The large biogeographical significance of this territory and the outstanding availability of sedimentary archives have made this region a hotspot of paleobotanical research in the Iberian Peninsula. Specifically, the organic deposits on El Asperillo Cliff have been studied during the past few decades from the geomorphological and paleobotanical (pollen, macrofossils) points of view. However, large uncertainties remain concerning the chronology of certain sections of the exposed profile and the paleobotanical potential of this site has not been fully exploited yet. In this study, we revisited El Asperillo with the aims of completing the paleobotanical record and refining the chronology of this site. The age of the studied deposits ranges from ca. 22,000 to 30,900 cal. yr BP according to the radiocarbon dates obtained, thus embracing the particularly cold and dry Heinrich Event 2 and the Last Glacial Maximum. Our palynological results allow inferring the presence of a coastal marshland system. Additionally, the new pollen records highlight the relevance and diversity of pines (Pinus nigra-sylvestris type, P. pinaster, P. halepensis-pinea type) in the Late Pleistocene landscape of Doñana, reinforcing the native status of pines. Last but not least, the results stress the persistence of a highly diverse woody flora in Doñana during the harshest periods of the last glacial cycle, highlighting the importance of this enclave in postglacial vegetation recolonization of the Iberian Peninsula.The development of this work was supported by Projects FEDER/Ministry of Science and Innovation, Agencia Estatal de Investigación CGL-BOS2015-68604-P and PID2019-1049449GB-I00), 261-2011 Organismo Autónomo de Parques Nacionales and Fundación Séneca grant 20788/PI/18Peer reviewe

    Population genomics of the critically endangered kākāpō

    Get PDF
    Summary The kākāpō is a flightless parrot endemic to New Zealand. Once common in the archipelago, only 201 individuals remain today, most of them descending from an isolated island population. We report the first genome-wide analyses of the species, including a high-quality genome assembly for kākāpō, one of the first chromosome-level reference genomes sequenced by the Vertebrate Genomes Project (VGP). We also sequenced and analyzed 35 modern genomes from the sole surviving island population and 14 genomes from the extinct mainland population. While theory suggests that such a small population is likely to have accumulated deleterious mutations through genetic drift, our analyses on the impact of the long-term small population size in kākāpō indicate that present-day island kākāpō have a reduced number of harmful mutations compared to mainland individuals. We hypothesize that this reduced mutational load is due to the island population having been subjected to a combination of genetic drift and purging of deleterious mutations, through increased inbreeding and purifying selection, since its isolation from the mainland ∼10,000 years ago. Our results provide evidence that small populations can survive even when isolated for hundreds of generations. This work provides key insights into kākāpō breeding and recovery and more generally into the application of genetic tools in conservation efforts for endangered species

    Assessing changes in global fire regimes

    Get PDF
    PAGES, Past Global Changes, is funded by the Swiss Academy of Sciences and the Chinese Academy of Sciences and supported in kind by the University of Bern, Switzerland. Financial support was provided by the U.S. National Science Foundation award numbers 1916565, EAR-2011439, and EAR-2012123. Additional support was provided by the Utah Department of Natural Resources Watershed Restoration Initiative. SSS was supported by Brigham Young University Graduate Studies. MS was supported by National Science Centre, Poland (grant no. 2018/31/B/ST10/02498 and 2021/41/B/ST10/00060). JCA was supported by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 101026211. PF contributed within the framework of the FCT-funded project no. UIDB/04033/2020. SGAF acknowledges support from Trond Mohn Stiftelse (TMS) and University of Bergen for the startup grant ‘TMS2022STG03’. JMP participation in this research was supported by the Forest Research Centre, a research unit funded by Fundação para a Ciência e a Tecnologia I.P. (FCT), Portugal (UIDB/00239/2020). A.-LD acknowledge PAGES, PICS CNRS 06484 project, CNRS-INSU, Région Nouvelle-Aquitaine, University of Bordeaux DRI and INQUA for workshop support.Background The global human footprint has fundamentally altered wildfire regimes, creating serious consequences for human health, biodiversity, and climate. However, it remains difficult to project how long-term interactions among land use, management, and climate change will affect fire behavior, representing a key knowledge gap for sustainable management. We used expert assessment to combine opinions about past and future fire regimes from 99 wildfire researchers. We asked for quantitative and qualitative assessments of the frequency, type, and implications of fire regime change from the beginning of the Holocene through the year 2300. Results Respondents indicated some direct human influence on wildfire since at least ~ 12,000 years BP, though natural climate variability remained the dominant driver of fire regime change until around 5,000 years BP, for most study regions. Responses suggested a ten-fold increase in the frequency of fire regime change during the last 250 years compared with the rest of the Holocene, corresponding first with the intensification and extensification of land use and later with anthropogenic climate change. Looking to the future, fire regimes were predicted to intensify, with increases in frequency, severity, and size in all biomes except grassland ecosystems. Fire regimes showed different climate sensitivities across biomes, but the likelihood of fire regime change increased with higher warming scenarios for all biomes. Biodiversity, carbon storage, and other ecosystem services were predicted to decrease for most biomes under higher emission scenarios. We present recommendations for adaptation and mitigation under emerging fire regimes, while recognizing that management options are constrained under higher emission scenarios. Conclusion The influence of humans on wildfire regimes has increased over the last two centuries. The perspective gained from past fires should be considered in land and fire management strategies, but novel fire behavior is likely given the unprecedented human disruption of plant communities, climate, and other factors. Future fire regimes are likely to degrade key ecosystem services, unless climate change is aggressively mitigated. Expert assessment complements empirical data and modeling, providing a broader perspective of fire science to inform decision making and future research priorities.Peer reviewe

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Trajectories of change in Mediterranean Holocene vegetation through classification of pollen data

    Get PDF
    © 2017 Springer-Verlag GmbH Germany, part of Springer Nature Quantification of vegetation cover from pollen analysis has been a goal of palynologists since the advent of the method in 1916 by the great Lennart von Post. Pollen-based research projects are becoming increasingly ambitious in scale, and the emergence of spatially extensive open-access datasets, advanced methods and computer power has facilitated sub-continental analysis of Holocene pollen data. This paper presents results of one such study, focussing on the Mediterranean basin. Pollen data from 105 fossil sequences have been extracted from the European Pollen database, harmonised by both taxonomy and chronologies, and subjected to a hierarchical agglomerative clustering method to synthesise the dataset into 16 main groupings. A particular focus of analysis was to describe the common transitions from one group to another to understand pathways of Holocene vegetation change in the Mediterranean. Two pollen-based indices of human impact (OJC: Oleaceae, Juglans, Castanea; API: anthropogenic pollen indicators) have been used to infer the degree of human modification of vegetation within each pollen grouping. Pollen-inferred cluster groups that are interpreted as representing more natural vegetation states show a restricted number of pathways of change. A set of cluster groups were identified that closely resemble anthropogenically-disturbed vegetation, and might be considered anthromes (anthopogenic biomes). These clusters show a very wide set of potential pathways, implying that all potential vegetation communities identified through this analysis have been altered in response to land exploitation and transformation by human societies in combination with other factors, such as climatic change. Future work to explain these ecosystem pathways will require developing complementary datasets from the social sciences and humanities (archaeology and historical sources), along with synthesis of the climatic records from the region

    Data for: Modern pollen representation of the vegetation of the Tagus Basin (central Iberian Peninsula)

    No full text
    Pollen and spore raw counts and percentages from a set of surface samples (moss polsters) from the Tagus Basin in central Iberi
    corecore