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Abstract 9 

Quantification of vegetation cover from pollen analysis has been a goal of palynologists since 10 

the advent of the method in 1916 by the great Lennart von Post.  Pollen-based research 11 

projects are becoming increasingly ambitious in scale, and the emergence of spatially 12 

extensive open-access datasets, advanced methods and computer power has facilitated sub-13 

continental analysis of Holocene pollen data.  This paper presents results of one such study, 14 

focussing on the Mediterranean basin.  Pollen data from 105 fossil sequences have been 15 

extracted from the European Pollen database, harmonised by both taxonomy and 16 

chronologies, and subjected to a hierarchical agglomerative clustering method to synthesise 17 

the dataset into 16 main groupings.  A particular focus of analysis was to describe the 18 

common transitions from one group to another to understand pathways of Holocene 19 

vegetation change in the Mediterranean.  Two pollen-based indices of human impact (OJC: 20 

Oleaceae, Juglans, Castanea; API: anthropogenic pollen indicators) have been used to infer 21 

the degree of human modification of vegetation within each pollen grouping.  Pollen-inferred 22 

cluster groups that are interpreted as representing more natural vegetation states show a 23 

restricted number of pathways of change.  A set of cluster groups were identified that closely 24 

resemble anthropogenically-disturbed vegetation, and might be considered anthromes 25 

(anthopogenic biomes).  These clusters show a very wide set of potential pathways, implying 26 

that all potential vegetation communities identified through this analysis have been altered in 27 

response to land exploitation and transformation by human societies in combination with 28 
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other factors, such as climatic change.  Future work to explain these ecosystem pathways will 29 

require developing complementary datasets from the social sciences and humanities 30 

(archaeology and historical sources), along with synthesis of the climatic records from the 31 

region. 32 
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Introduction 48 

Pollen analysis allows past vegetation to be described, with the signal mediated through 49 

taphonomic and depositional processes.  A wide variety of methods have been established to 50 

translate pollen data into meaningful vegetation units, including biomisation (Prentice et al. 51 

1996), pseudobiomisation (Fyfe et al. 2010; Woodbridge et al. 2014), modern analogue 52 

methods for identifying modern equivalents to fossil assemblages (e.g. Gaillard et al. 1994) 53 

and quantifying vegetation cover through model-based transformation (Sugita 2007a, b; 54 

Gaillard et al. 2010; Trondman et al. 2015).  Understanding the processes that lead to changes 55 

in vegetation is a next logical step after palaeo-vegetation classification and description.  56 

Much effort is focussed on understanding the role of anthropogenic forcing in transformation 57 

of vegetation, something that von Post (1946) largely overlooked, in spite of his engagement 58 

with archaeological research programmes.   59 

Humans have transformed natural environments over many millennia, from Neolithic 60 

farming to modern agriculture.  Williams et al. (2015) have argued that technological 61 

development has rapidly transformed ecological structure and dynamics, including vegetation 62 

(impacting on species richness, evenness, and biomass), resulting in changes from semi-63 

natural or natural systems to human-modified vegetation.  Ellis and Ramankutty (2008) 64 

describe the transformation from ‘natural’ to ‘anthropogenic’ biomes, using the term 65 

‘anthromes’.  The development of ‘anthromes’ likely occurred over many millennia (Ellis et 66 

al. 2010; Ellis 2011; Ruddiman et al. 2016), but transformation of vegetation at the global 67 

scale is not recognised until recent centuries (Ellis 2011).  It is possible to identify anthromes 68 

at a regional (sub-continental) scale, particularly in areas with longer histories of complex 69 

societies.  Understanding the development of (and trajectories towards) anthromes can be 70 

facilitated by meta-analysis of pollen data across regions and continents (e.g. Fyfe et al. 2015; 71 

Trondman et al. 2015, although neither explicitly describe anthromes).  The emergence of 72 

such novel ecosystems has been a focus of interest for conservation management, but, as 73 

Perring and Ellis (2013) have argued, novel ecosystems are frequently ancient rather than 74 

recent developments and ecosystem novelty also depends on when the reference baseline is 75 

set (Radeloff et al. 2015).  In the Mediterranean, sedentary village life began by 8000 BP and 76 

agriculture was established across the majority of the European Mediterranean region by 77 

6000 BP (Roberts 2013).  By the 4th millennium BP, complex societies operated within a 78 

clearly established ‘world’ system (Butzer 2005), periodically punctuated by collapses of 79 
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higher-order socio-political structures. In addition, fire has long been used as a tool of 80 

environmental management, notably to encourage re-growth of new vegetation for livestock 81 

grazing and browsing (Vannière et al. 2010). 82 

The divergence of “natural” from modern vegetation in the Mediterranean has previously 83 

been explored by Collins et al. (2012), by comparison of fossil assemblages from 6000 BP 84 

with recent pollen samples from the same sites, and in the earlier BIOME6k project (Prentice 85 

et al. 2000; Roberts et al. 2004).  Clear differences are described between 6000 BP as a 86 

reference baseline, and modern time periods, most notably via increasing amounts of open 87 

ground, and the establishment and spread of disturbed and anthropogenically-modified 88 

vegetation.  This paper seeks to understand transitions from one vegetation state to another 89 

using the example of the Mediterranean.  It will assess the extent to which 90 

pathways/transitions from one state to another have been predictable and replicated between 91 

sites.  The methodological basis, which is described in greater detail below, involves 92 

"unsupervised" data classification, rather than imposed quantification (c.f. biomisation: 93 

Prentice et al., 1996), to produce a taxonomy of pollen samples, grouped by similarity in their 94 

assemblages.  The paper draws on a large number of fossil pollen sequences from across the 95 

Mediterranean basin.  Detailed analysis that compares the unsupervised classification of these 96 

pollen data to pre-existing classifications (e.g. biomisation) and modern vegetation mappings 97 

is described in Woodbridge et al. (in review).  Recent work by Felde et al. (2014, 2016) has 98 

demonstrated the clear potential of such an approach in the analysis of large pollen datasets, 99 

something that even a decade ago would not have been possible without the advent of high-100 

performance computing, and the establishment of clear statistical approaches for the analysis 101 

of palaeoecological datasets (Birks et al. 2012).  102 

 103 

Materials and methods 104 

Modern and fossil pollen datasets 105 

The approach to classification of samples used here is Ward’s hierarchical agglomerative 106 

clustering method (Ward 1963; Murtagh and Legendre 2014), using Euclidean distance as the 107 

dissimilarity measure between samples.  Whilst a large number of alternative methods exist 108 

for the classification of palaeobotanical data, careful experimentation has shown that different 109 
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methods commonly produce similar results (Felde et al. 2014, 2016).  As the purpose here is 110 

to assess trajectories of change between classes of pollen assemblages, the simpler Ward’s 111 

method has been employed over more complex approaches; Woodbridge et al. (in review) 112 

discuss some alternative approaches to classification of the same dataset.  An advantage of a 113 

hierarchical approach to clustering data is also the ability to (dis)aggregate at different levels 114 

across the dendrogram (Garcia-Madrid et al. 2014).  Analyses were undertaken using the R 115 

package VEGAN (Oksanen et al. 2016). 116 

All pollen data used have been extracted from open-access online data stores.  Sub-fossil 117 

pollen count data was obtained from the European Pollen Database (EPD: May 2016 version: 118 

Leydet 2007-2017).  The EPD is a community-driven database that archives site metadata, 119 

chronological information and raw count data (Fyfe et al. 2009).  Pollen sites located in areas 120 

with characteristic Mediterranean climate and vegetation have been selected (Fig. 1), using 121 

definitions from Ozendaa and Borela (2000) and Izdebski et al. (2015).  Figure 1B and 1C 122 

show that Mediterranean climate space is well represented in both our modern and fossil 123 

pollen site data.  Each fossil sample extracted from the EPD was assigned a calibrated age 124 

estimate on the basis of established core chronologies (Giesecke et al. 2014; Leydet 2007-125 

2017).  The pollen count data from each site has been summed into contiguous 200-year time 126 

windows from 11000-10800 to 200- -65 cal BP (with AD1950 as present day).  Additionally, 127 

‘modern’ pollen count data was taken from the European Modern Pollen Database (EMPD: 128 

Davis et al. 2013), a repository of surface pollen count data, including date of collection, 129 

locational information and additional site metadata.  The taxonomy of the EPD and EMPD 130 

was harmonised and simplified, taking the EPD as the base.  Where possible a detailed level 131 

of taxonomic resolution was retained, particularly for key indicator species of disturbance 132 

(e.g. ribwort plantain: Plantago lanceolata); other taxa were combined at a higher taxonomic 133 

level owing to differences in recording between analysts across Europe (e.g. all evergreen 134 

oak species and varieties). All taxa below 1% of the pollen sum that occurred in fewer than 135 

50 samples were excluded, resulting in 260 pollen taxa.  The harmonisation and ‘binning’ of 136 

sub-fossil and modern samples into 200-year long time windows resulted in a single dataset 137 

of 4164 samples, of which 1610 are modern and 2554 are sub-fossil (from 105 sites).  The 138 

number of clusters was chosen through visual inspection of the dendrogram and 139 

developments of measures that described intra-cluster compactness and inter-cluster 140 

dissimilarity, on the basis of mean Euclidean distance scores.  141 
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A phytosociological approach was used to describe clusters identified within the pollen data.  142 

The frequency of occurrence of taxa within each cluster was calculated, and the abundance 143 

(pollen percentages) calculated using the median and inter-quartile range.  Frequency of 144 

occurrence was based on a five-point scale, where V represents a taxon occurring in 81-100% 145 

of all samples in a cluster, IV = 61-80%, III = 41-60%, II = 21-40% and I = 0-20%.  146 

Frequencies of V and IV indicate constant taxa, III common taxa, II occasional taxa and I 147 

scarce taxa.  This approach does not explicitly resolve issues of differential productivity of 148 

pollen (Broström et al. 2008); the interpretation of the community data requires this to be 149 

taken into consideration.  Clusters have been given names on the basis of the constant taxa to 150 

aid in description of the results.  Detailed comparison between these names, modern 151 

vegetation communities and pre-existing classification of pollen data (e.g. biomisation: 152 

Prentice et al. 1996) is presented in Woodbridge et al. (in review).  For each sample two 153 

established Mediterranean ‘human impact’ indices have been calculated: OJC (Oleacaeae, 154 

Juglans, Castanea: Mercuri et al., 2013a) and API (consisting of the human impact indicators 155 

Artemisia, Centaurea, Cichorieae [syn. Lactuceae], Plantago, cereals, Urtica, Trifolium: 156 

Mercuri et al., 2013b), and these indices have been summarised for each cluster. 157 

In order to identify within-site pathways of vegetation change across consecutive time 158 

windows the frequency of change from each pollen cluster to all other clusters was 159 

calculated.  These data have been visualised in chord diagrams, constructed in R using the 160 

Circlize package (Gu 2014).  Plots are circular in character, and use line width to indicate the 161 

frequency by which samples change from one cluster grouping to another between adjacent 162 

time windows, in similar fashion to that used in the “clock-face” diagrams of Walker (1970).  163 

In order to aid visualisation, separate chord plots have been constructed for each cluster, and 164 

are organised to indicate change routes towards a cluster (i.e. precursor clusters) and 165 

destinations of change from clusters.  Self-links (i.e. periods of stasis where a site does not 166 

change cluster group across adjacent time windows) are ignored, as are gaps in individual site 167 

records (i.e. where there are no dated samples within a time window). 168 

 169 

Results 170 

Differentiation of clusters within the pollen dataset 171 
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Sixteen groups of pollen samples have been extracted through the clustering analysis 172 

following visual inspection of the dendrogram (Figure 2) and experimentation with 173 

aggregation of samples at different levels.  The dendrogram shows the aggregation of these 174 

16 groups into eight meta-groups, and labelling of the clusters reflects both of these 175 

groupings (i.e. meta-group 8 is an aggregation of four lower-level clusters, labelled 8.1, 8.2, 176 

8.3 and 8.4).  The phytosociological approach has been used to generate ecological meaning 177 

for each grouping, drawing on the constant taxa that are present in each cluster.  The results 178 

of this are shown on Figure 3.  Whilst importance is given to the range of values of each 179 

constant taxon (shown as box-and-whisker plots with the interquartile range, median, 180 

minimum and maximum values indicated), this is moderated by knowledge of relative pollen 181 

productivity, including lower producers (typically the herbaceous taxa: Broström et al. 2008) 182 

and high pollen producers such as Pinaceae (e.g. Stedingk et al. 2008).   183 

Cluster 1 is an aggregation of four distinct groups that all appear to indicate open, disturbed 184 

or human-modified vegetation as reflected in the OJC and API indices (Table 1; Figure 3).  185 

Cluster 1.1 has as its constant taxa Poaceae, Ericaceae, Pinaceae, Quercus (evergreen taxa) 186 

and Oleaceae, but is the least compact cluster that is produced according to the summary 187 

Euclidean distance scores (Table 2).  Cluster 1.2 has Oleaceae as a constant and dominant 188 

taxon and has the highest OJC score (ranked 1/16), with a smaller number of co-constants 189 

than other clusters, but including Poaceae and Quercus (evergreen taxa). Cluster 1.3 includes 190 

as constants a series of steppe taxa, such as Chenopodiaceae, Artemisia, other open ground 191 

taxa including Poaceae which results in the highest API score; Pinaceae and Quercus 192 

(evergreen taxa) are also constant taxa.  Cluster 1.4 has a suite of open ground taxa within the 193 

constants, including Poaceae, Plantago lanceolata, Chenopodiaceae, Caryophyllaceae, 194 

Asteraceae (subfamilies Asteroideae and Lactucoides), Ranunculaceae, and is one of only 195 

two clusters to include Cerealia-type as a constant taxon. Cluster 1.4 is ranked 5/16 and 3/16 196 

for the human impact indicator groups OJC and API. 197 

Cluster 2 is a distinct group whether 16 or 8 clusters are derived from the dataset, and is both 198 

very compact and distinct from other clusters as measured by average dissimilarity scores 199 

(Table 2).  The constant taxa (frequency class V) that dominate the assemblages in this group 200 

are Quercus (evergreen taxa) and Poaceae, with Pinaceae, Oleaceae and Cistaceae notable in 201 

frequency class IV.  This group of samples is thus considered to represent evergreen oak 202 

woodland/scrub.  Cluster 3 includes within the constant taxa Cyperaceae (dominant), 203 
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Pinaceae, Poaceae and Quercus (deciduous taxa).  This group is harder to interpret owing to 204 

the possible ecological meanings of Cyperaceae, but Woodbridge et al. (in review) argue that 205 

it represents a combination of lowland wetland and upland pasture.  The cluster is ranked 206 

6/16 on the API index on the basis of the median score for samples within the group. 207 

Clusters 4 and 5 have as their dominant constant taxon Pinaceae (Figure 3), and all have 208 

Poaceae and Quercus (deciduous taxa) as co-dominants.  Overall these groupings have very 209 

low OJC indices.  The groupings are distinctive and separate out even at lower numbers of 210 

clusters (Figure 2) and this is further reflected in the low intra-cluster average Euclidean 211 

distance scores (Table 2).  Cluster 4 has high values of Pinaceae, and most likely represents 212 

pine forest.  Cluster 5 is an aggregation of two groups.  Cluster 5.1 has proportions 213 

intermediate between clusters 4 and 5.2 (Figure 3), and cluster 5.2 has both a greater number 214 

of constant taxa including open-ground indicators such as Chenopodiaceae, Caryophyllaceae 215 

and Ranunculaceae, and higher proportions of open-ground indicators.  Cluster 5.2 thus has a 216 

higher API index, and is ranked 5/16.  Cluster 5.1 is described as pine woods, and 5.2 as pine 217 

steppe. 218 

Cluster 6 has as its dominant constant Quercus (deciduous taxa), and is an aggregation of two 219 

groups.  Both groups have a large number of constant taxa (across both frequency classes V 220 

and IV), and whilst the constant taxa in frequency class V are virtually identical, the groups 221 

are differentiated on the proportions of these taxa, with 6.2 having lower proportions of 222 

Quercus (deciduous taxa) and higher values across the open ground taxa.  Cluster 6.2 is also 223 

the only other group (other than 1.4) to include Cerealia-type as a constant, albeit at low 224 

proportions, and is ranked 7/16 on the basis of the API index.   225 

Cluster 7 is a distinct grouping (Figure 2), and is described as fir forest, as the constant 226 

dominant taxon is Abies, and the other constant taxa are also largely woodland types.  It has 227 

the lowest rankings for both the OJC (15/16) and API (16/16) rankings.  Cluster 8 is an 228 

aggregation of four of the 16 clusters that are also largely dominated by woodland taxa, and 229 

as a group have the lowest OJC and API scores.  Cluster 8.3 appears to represent beech 230 

woodland, 8.4 mesic forest, 8.1 alder woods and 8.2 non-Pinaceae coniferous forest. Whilst 231 

these are compact and distinct clusters on the basis of the mean intra-cluster Euclidean 232 

distance dissimilarity scores, the lower inter-cluster dissimilarity scores between the four sub-233 

clusters reflect their greater similarity (Table 2). 234 
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The spatial distribution of some common cluster groups for the early (11,000-8,200 BP), mid 235 

(8,200-4,200 BP) and late (4,200 BP - present) Holocene are shown in Figure 4.  The 236 

Holocene subdivisions correspond to those defined by Walker et al. (2012).  Some of the 237 

vegetation clusters have strong regional distribution (Figure 4). Sclerophyll parkland (1.1), 238 

for example, is most common in Iberia, and the central Mediterranean region shows the 239 

clearest late Holocene increase in parkland/grassland (1.4). Although pine woods (5.1) are 240 

widespread in southern France and Iberia in the early Holocene, this cluster group is absent in 241 

the eastern Mediterranean at this time, and instead appears in the mid and late Holocene. 242 

Deciduous oak woods (6.1) are most common in the eastern Mediterranean and 243 

parkland/grassland (1.4) is common here throughout the Holocene, rather than showing a late 244 

Holocene rise. 245 

Transitions between clusters 246 

The change (transition) from one cluster group to another has been visualised in chord 247 

diagrams (Figure 5).  These show, in each case, the precursor groups (blue), and the 248 

subsequent direction of change (green) for each cluster.  Clusters that have few switches 249 

either to or from them (<10) have been excluded from the plots (clusters 1.2, 2, 8.1, 8.2 and 250 

8.3).  Values on the plots are proportions of the total number of changes i.e. thicker lines 251 

indicate more frequent changes in the direction indicated.   252 

The key observation that can be made from the chord plots is that for the clusters that are 253 

indicative of more open vegetation and those with higher OJC and API scores (clusters 1.1, 254 

1.2, 1.3 and 1.4), there are no dominant transition routes from one cluster to another.  These 255 

clusters have a broad spectrum of pathways both to and from them across the range of sites 256 

used here.  As an example, transitions to cluster 1.1 (sclerophyllous parkland) come from all 257 

other clusters with the exception of clusters 8.1 (alder woods) and 8.3 (beech woods).  No 258 

single route is dominant although some pathways are more common, including 1.2 (evergreen 259 

shrubland) and 1.3 (sclerophyllous steppe/parkland).  Onwards transitions for cluster 1.1 go 260 

to one of nine (from 15) possible clusters.  A similar pattern is observed for cluster 1.4 261 

(parkland/grassland), with only cluster 5.1 (pine woods) not acting as a precursor and many 262 

recorded ‘destination’ clusters.  The same broad pattern is observed for cluster 3 263 

(pasture/wetland).  Almost all possible pathways to this cluster are recorded (with cluster 1.4 264 

the most frequent, but not the dominant route). 265 
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In contrast, clusters that represent closed vegetation (i.e. forest, or natural as inferred from the 266 

very low OJC and API scores) have fewer possible precursors.  For example, cluster 4 (pine 267 

forest) largely emerges from one of four clusters: 5.1 (pine woods), 5.2 (pine steppe), 8.4 268 

(mesic forest) and 1.3 (sclerophyllous steppe/parkland).  Cluster 6.1 (deciduous oak 269 

woodland) comes from one of eight paths, but has dominant routes that include cluster 6.2 270 

(deciduous oak parkland), 2 (evergreen broad-leaved shrubland) and 8.4 (mesic forest).  271 

Cluster 7 (fir forest) only develops from cluster 8.4 (mesic forest) and cluster 8.3 (beech 272 

forest).  A greater number of possible destination clusters exist for these more closed 273 

vegetation groups, with the exception of cluster 6.1 (deciduous oak woods) which largely 274 

transitions to cluster 6.2 (deciduous oak parkland). 275 

 276 

Discussion 277 

Identifying natural and anthropogenic clusters 278 

The value in using palaeoecology to inform resource and conservation managers in relation to 279 

vegetation pathways and change under known past environmental change has been identified 280 

by many authors (e.g. Birks 1996; Jackson and Blois 2014; Edwards et al. 2017).  The 281 

approach employed here has allowed us to gain novel insights into past groupings of pollen 282 

samples, and by inference the nature of past vegetation, in a way that has not been attempted 283 

previously.  The results of the meta-analysis of pollen samples has identified clusters that fall 284 

along a spectrum of human impact, from those assemblages that resemble more natural 285 

communities, and those that show clear levels of anthropogenic transformation, supported by 286 

the human impact indices OJC and API (Mercuri et al. 2013a,b).  More natural vegetation 287 

communities are those clusters characterised by deciduous (or sclerophyllous) woodland, 288 

such as clusters 8.1-8.4 (alder, coniferous, beech and mesic forests), 6.1 (oak woods) and 7 289 

(fir forest).  The clusters in group 1 have the highest human impact scores from both 290 

woodland cultivation (the OJC index) and pastoral and arable indicators (the API). These 291 

communities are thus most likely to represent human-modified vegetation and thus 292 

‘anthromes’ (cf Ellis 2011), as identified through novel groupings of pollen resulting from the 293 

transformation of natural vegetation systems.  Measures of ecosystem novelty are not 294 

included here, although recent work has begun to demonstrate the timing and scale of 295 

emergence of novel communities within Europe (Finsinger et al. 2017).  A third broad 296 
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grouping is those clusters dominated by pine, although at this stage it is difficult to assess the 297 

role of natural disturbance regimes (e.g. fire: Morales-Molino et al. 2013) in the development 298 

or fragmentation of these pine groups. 299 

Butzer (2005) describes two important land-use systems that emerge within the Holocene in 300 

the Mediterranean: upland pastoral land use and Mediterranean polyculture.  Mediterranean 301 

polyculture represents a diverse set of land use management approaches in a single system, 302 

including grain, animals and orchards (olive, walnut and grapes).  According to Grove and 303 

Rackham (2003) the scale of patches (fields, or blocks of individual types of land use) within 304 

the polyculture system can be small and highly fragmented.  Thus, any pollen samples from 305 

within a cultural landscape may potentially include a variety of these different agricultural 306 

land types, and still retain elements of less-disturbed vegetation.  The use of key ‘indicator’ 307 

taxa within the pollen clusters (the OJC and API indices) has allowed these transformed 308 

vegetation communities to be identified.  The use of two indicators of human impact further 309 

supports the inferences: the Spearman’s rho reveals a highly significant relationship between 310 

the two indices (rs[16] = 0.81, p < 0.000). 311 

 312 

Transitions in Holocene Mediterranean vegetation 313 

The analysis of change between cluster groups can provide useful insights into the 314 

development of the Mediterranean vegetation.  Differences between natural and 315 

anthropogenically-modified vegetation can be observed; for example, more natural clusters 316 

(e.g. 4, 6.1, 7, 8.4: Figure 5) typically show only a small number of different precursor 317 

groups.  Thus pine forest (cluster 4: Figure 5) largely develops from pine woodland 318 

(expansion of pine), pine steppe (development of woodland) and steppe parkland (early 319 

Holocene expansion of pine).  Deciduous oak woods (cluster 6.1: Figure 5) largely develops 320 

from oak parkland (woodland expansion and development) and mesic forest (suggesting 321 

competition with other species), although in a small number of cases it can replace 322 

sclerophyllous vegetation types.  323 

In contrast, those clusters identified as reflecting human-modified vegetation (within the 324 

broad cluster groups 1 and 3) have a very wide set of potential pathways of change.  The 325 

transformation of natural vegetation towards these clusters (Figure 5), is thus not predictable.  326 
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This suggests that past societies did not preferentially alter one set of vegetation communities 327 

over another (e.g. selective fragmentation of mesic forests over pine steppe), but appear to 328 

have exploited and transformed a wide array of natural vegetation types.  However, 329 

vegetation changes are also influenced by the climatic limits and ecotones of different plant 330 

communities.  Previous comparisons of Mediterranean vegetation at 6000 BP and the 331 

present-day confirm the transformation of much of the landscape (Collins et al. 2012).  This 332 

included not only an overall reduction in woodland cover (reflected in arboreal pollen 333 

percentages) but also the existence, and transformation of, xeric communities between 6000 334 

years ago and present.  Collins et al. (2012) used this as evidence that the modern 335 

Mediterranean is thus not principally a transformation from a largely mesic mid-Holocene 336 

forest vegetation to the largely open and fragmented modern landscape.  This is supported by 337 

the findings presented here: anthropogenic clusters can emerge from many other vegetation 338 

clusters.   339 

A notable feature of the chord diagrams is reciprocity of pathways between clusters (Figure 340 

5).  For example, cluster 4 (pine forest) is frequently preceded by cluster 5.1 (pine woods).  341 

Destinations from cluster 4 are also frequently cluster 5.1.  A similar pattern can be observed 342 

for clusters 6.1 and 6.2 (oak forest and oak parkland).  This is in part a reflection of the 343 

methodological basis of hierarchical clustering.  All samples must fall within a discrete 344 

cluster (as described below), and inevitably similar samples may fall within different classes 345 

if they lie close to the divisions imposed on the data in the method.  As vegetation rarely 346 

changes abruptly in either space or time, temporal autocorrelation between samples in a site 347 

may mean that adjacent assemblages are very similar, but ‘flicker’ (i.e. short-duration shifts) 348 

between similar cluster groupings (e.g. oak parkland and oak forest, which are largely 349 

differentiated on the basis of proportions of a similar group of constant taxa: Figure 3). Such 350 

flickering has been observed in other classification methods with an arbitrary element (e.g. 351 

pseudobiomisation, which uses an affinity score to assign pollen samples to predetermined 352 

classes: Fyfe et al. 2010).  Whilst this is the most likely explanation for the reciprocity 353 

between groups, part of the pattern may also reflect changes in intensity of land use, 354 

particularly when clusters move to, and from, clusters with higher or lower implied levels of 355 

human modification such as oak parkland (API rank 7: Table 1) to parkland/grassland (API 356 

rank 3: Table 1), or linked to periods of more/less frequent landscape burning (e.g. Kaniewski 357 

et al. 2008).  Butzer (2005) has described cycles of intensification and de-intensification 358 

within the Mediterranean, which reflect expansion and contraction of complex societies 359 
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within a wider set of world systems.  Within this framework of intensification/de-360 

intensification the expected pattern of Mediterranean vegetation would not be a monotonic 361 

drive towards increased production and thus increased modification of vegetation.  Phases 362 

typified by re-expansion of more natural vegetation communities (perhaps on ~600 year time 363 

scales, according to Butzer) would be expected.  This may reflect movement towards, and 364 

from, anthropogenic clusters (i.e. oak woodland to parkland with intensification, and back 365 

with de-intensification).  Butzer (2005) takes as an example the Lake Lerna pollen record 366 

from the southern Argolid region of Greece (Jahns 1993).  Cycles of disturbance (with 367 

associated weed and cereals) and revertance (re-establishment of more natural vegetation) 368 

can be clearly linked to the archaeological record from the region.  The implications are that 369 

whilst movement of samples between broadly similar clusters may reflect the characteristics 370 

of the method, they may also reflect real variations in land use intensity. 371 

 372 

The value of classification of pollen samples 373 

The unconstrained organisation, or grouping, of data offers opportunities in the description of 374 

past vegetation from pollen data, by allowing the inherent structure in the data to emerge, 375 

particularly when a priori groupings in the data cannot be established (Felde et al. 2016).  376 

Although previous work has also undertaken inductive data exploration such as that described 377 

in this paper through classification (notably Huntley 1990) it remains an under-utilised 378 

approach (Felde et al. 2014).  The approach assumes that distinct groupings exist with the 379 

dataset under study.  Whilst there are in general clear and distinct vegetation communities 380 

(and thus pollen assemblages) both in the present and the past Mediterranean landscape (e.g. 381 

pine forests vs deciduous oak woodland) the gradual nature of vegetation change in both 382 

space and time means that edges between groups may be ‘blurred’ (e.g. ecotones between 383 

major vegetation communities).  Further, pollen records integrate the signal of all vegetation 384 

communities within the source area of the pollen.  In highly heterogeneous landscapes this 385 

may present particular challenges where pollen may be sourced from both highly modified 386 

and more natural vegetation communities.  In spite of these caveats, it has been possible 387 

through this approach to recognise distinct Mediterranean vegetation types as reflected in sets 388 

of distinctive pollen assemblages.   389 
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The results shown in the chord plots (Figure 5) are a first step in describing general patterns 390 

of vegetation development across the Mediterranean basin, focusing on transitions from one 391 

state to another.  Future efforts might include comparison of Holocene pathways of change 392 

with those from previous interglacials, which must reflect natural vegetation communities 393 

and pathways of change (such as those described by Tzedakis 2007), to further elucidate 394 

human impact on Holocene vegetation.  Changes driven by extrinsic factors (e.g. shifts in 395 

Mediterranean climate) might be expected to produce largely temporally consistent shifts in 396 

vegetation, whilst intrinsic drivers (including site-specific human impacts) may produce 397 

shifts that are more localised in both time and space.  Clearly understanding such site-based 398 

patterns demands an understanding of both regional differences in climate (e.g. Labuhn et al. 399 

(in press) for the first millennium AD), and a detailed understanding of changing population 400 

dynamics and land use systems from the archaeological and historical record (Perring and 401 

Ellis 2013).   402 

The unsupervised classification approach also has clear limitations, not least that all pollen 403 

sites are treated equally.  There has been no attempt to account for inter-site taphonomic 404 

differences, such as scale of vegetation represented between small and large lakes, or 405 

depositional biases between lakes and mires.  Woodbridge et al. (2014) showed that whilst 406 

such differences can produce noise in the analysis of large datasets, generally they do not 407 

obscure the resulting signal that is obtained.  Similarly, differential pollen production is not 408 

accounted for (e.g. Fyfe et al. 2013; Marquer et al. 2014; Trondman et al. 2015).  Placing 409 

equal emphasis on frequency of occurrence of taxa and relative proportions of taxa, is an 410 

attempt to alleviate this problem.  Despite the limitations, there is still considerable value in a 411 

data driven approach that is not restricted by the availability or applicability of PPEs and 412 

allows major patterns in pollen datasets to be identified.   413 

 414 

Conclusions 415 

Ward’s hierarchical clustering method has provided a simple approach to the division of a 416 

large harmonised dataset from 105 sub-fossil pollen sequences and 1610 surface pollen 417 

samples in the Mediterranean extracted from the EPD and EMPD.  The division of the dataset 418 

into sixteen groups has allowed the identification of clusters that are taken to represent more 419 

natural vegetation communities (mesic, coniferous and sclerophyllous forest types), and more 420 
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open land cover types associated with human impact, supported by summary human impact 421 

indicators.  Some of these anthropogenic land cover types could be taken to represent 422 

anthromes, that is, anthropogenically-modified biomes. 423 

Clusters that are taken to represent more natural vegetation assemblages have limited 424 

pathways of change between states.  In contrast, those with a higher level of human 425 

modification (as reflected in the OJC and API rankings) show numerous pathways to their 426 

development.  This implies widespread fragmentation of all community types as a 427 

consequence of human impact, rather than selective transformation of particular types of 428 

vegetation.  Movement of sites from one cluster to a similar group and back may partly 429 

represent an artefact of the method, but it is possible that some of these changes represent 430 

cycles of intensification/de-intensification of land use, a phenomenon observed in the 431 

archaeological record since prehistoric times.   432 

Much more work is required to understand in detail the processes behind the transformation 433 

and change in the Mediterranean pollen data represented here and this is a non-trivial task.  It 434 

will necessitate a comprehensive understanding of human land pressure around each site 435 

including land use systems and population dynamics (drawn from archaeological and 436 

historical sources), and the compilation of spatially-explicit climatic records.  The ability to 437 

describe vegetation at the sub-continental scale using approaches such as that presented here 438 

is clear, and a next step is to develop the independent (i.e. non-pollen) datasets that can help 439 

understand the patterns that emerge.  440 
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Figure 1: Location of sites from the Mediterranean region from the European Pollen Database 633 

and European Surface Sample Pollen Database within geographical (A) and climatological 634 

space (B: EPD sites; C: EMPD surface samples).  In (B) and (C) overall Mediterranean 635 

climate is described using a kernel density plot of all grid cells within the Mediterranean 636 

region (data taken from Hijmans et al. 2005). 637 
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Figure 2: Dendrogram derived from hierarchical clustering of the pollen samples using 641 

Ward’s method.  The final 16 derived clusters are indicated with solid boxes; the higher level 642 

of aggregation to 8 ‘meta-clusters’ is indicated with dotted boxes.  643 
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Figure 3: Constant taxa in each of the sixteen cluster groupings derived from Ward’s 647 

hierarchical clustering method.  Only constant taxa (frequency groups V (dark shading) and 648 

IV (mid-grey shading)) are shown.  Boxes indicate the interquartile range of each taxon 649 

within the cluster, with the median, maximum and minimum values also shown.   650 
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Figure 4a,b: Spatial and temporal distribution of cluster groups 1.1, 1.4, 5.1 and 6.1.  Samples 654 

are aggregated into broad time windows to show patterning between the early-, mid- and late-655 

Holocene. 656 
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Figure 5: Chord diagrams for each pollen cluster indicating frequency and direction of 662 

change for each group.  Blue lines flow towards the cluster, indicating the precursor groups.  663 

Green lines flow from each cluster, and indicate the groupings to which samples in each site 664 

switch. Values of ‘t’ and ‘f’ on each plot indicate total number of switches to and from each 665 

cluster; ‘nc’ indicates percentage of samples that do not switch across consecutive time 666 

windows. 667 
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Table 1: Descriptions of the cluster groups, including dominant taxa and summaries of the human 671 

impact indices used (OJC: Oleaceae, Juglans, Castanea sensu Mercuri et al., 2013a; API: Artemisia, 672 

Centaurea, Lactuceae [syn. Cichorieae], Plantago, cereals, Urtica, Trifolium sensu Mercuri et al., 673 

2013b) and ranking of clusters by human impact indices. 674 

Cluster Cluster name (dominant taxa) %OJC index 

median (IQR) 

OJC 

rank 

%API index  

median (IQR) 

API 

rank 

1.1 Sclerophyllous parkland 

(Poaceae-Quercus-Oleaceae-herbaceous 

and sclerophyll taxa) 2.42 (0.56-8.47) 2 7.89 (2.45-22.57) 2 

1.2 Evergreen shrubland 

(Oleaceae-Quercus evergreen-Poaceae-

herbaceous and sclerophyllous taxa) 

46.78 (39.05-

61.8) 1 6.27 (3.03-9.76) 4 

1.3 Sclerophyllous steppe/parkland 

(Chenopodiaceae-Poaceae-Artemisia-

Quercus evergreen-Oleaceae)  1.85 (0.45-5.88) 4 8.64 (4.96-16.3) 1 

1.4 Parkland/grassland 

(Poaceae, Quercus deciduous, Asteraceae)  0.97 (0.23-3.44) 5 6.32 (3.4-12.29) 3 

2 Evergreen broad-leaved shrubland 

(Quercus evergreen, Poaceae) 2.14 (0.79-4.41) 3 2.42 (1.44-4.05) 8 

3 Pasture/wetland 

(Cyperaceae, Poaceae, Quercus deciduous) 0.42 (0-2.46) 8 3.26 (0.96-6.96) 6 

4 Pine forest 

(Pinaceae) 0.03 (0-0.73) 13 1.57 (0.79-3.08) 13 

5.1 Pine woods 

(Pinaceae-Poaceae-Quercus deciduous) 0.14 (0-0.68) 9.5 2.15 (0.94-4.56) 9 

5.2 Pine steppe 

(Pinaceae-Poaceae-Quercus deciduous-

Artemisia) 0.13 (0-0.96) 11 3.44 (1.53-7.52) 5 

6.1 Deciduous oak woods 

(Quercus-Poaceae-Pinaceae) 0.64 (0.07-2.74) 6 1.62 (0.85-3.07) 12 

6.2 Deciduous oak parkland 

(Quercus-Poaceae-Pinaceae-sclerophyll 

taxa) 0.43 (6.06-2.07) 7 3.04 (13.13-6.16) 7 

7 Fir forest 

(Abies-Quercus deciduous-Corylus-

Pinaceae) 0 (0-0) 15 0.5 (0.17-1.06) 16 

8.1 Alder woods 

(Alnus-Quercus deciduous-Cyperaceae) 0.06 (0-0.55) 12 1.91 (0.79-3.55) 10 

8.2 Coniferous forest 

(Picea-Pinaceae-Abies) 0 (0-0.3) 15 1.2 (0.74-2.04) 14 

8.3 Beech woods 

(Fagus-Quercus deciduous-Poaceae-

Corylus) 0.14 (0-0.67) 9.5 1.72 (0.96-3.24) 11 

8.4 Mesic forest 

(Corylus-Quercus deciduous-Poaceae-

Pinaceae-Ulmaceae) 0 (0-0) 15 1.05 (0.45-2.86) 15 
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Table 2: Summary of dissimilarity matrix scores for each cluster, and dissimilarity scores showing 675 

difference between clusters.  Values are based on average Euclidean distance between all samples 676 

within, or between, clusters.  Higher scores indicate a greater degree of dissimilarity. 677 

 1.1 1.2 1.3 1.4 2 3 4 5.1 5.2 6.1 6.2 7 8.1 8.2 8.3 8.4 

1.1 53.4                

1.2 62.6 28.0               

1.3 63.4 70.8 38.9              

1.4 52.7 62.1 62.3 34.1             

2 67.4 72.9 78.5 66.5 26.7            

3 61.1 70.6 69.7 55.0 78.3 30.5           

4 78.2 91.8 84.3 80.0 94.0 79.6 18.6          

5.1 60.0 74.7 68.5 60.2 78.0 62.1 35.3 28.2         

5.2 53.8 67.8 62.7 50.2 73.3 51.3 51.0 36.9 34.1        

6.1 61.2 72.1 72.1 57.3 76.3 66.1 85.6 65.4 59.7 25.7       

6.2 52.0 64.3 63.1 45.6 70.4 53.2 72.5 52.3 45.9 35.6 31.4      

7 64.2 74.3 73.6 63.5 80.7 66.0 84.6 66.5 55.0 65.0 58.0 30.8     

8.1 59.5 70.5 69.3 57.5 76.3 60.7 79.0 61.3 54.5 62.1 52.6 61.5 32.5    

8.2 55.2 67.1 65.3 54.8 74.0 59.1 72.7 54.5 47.9 60.3 50.4 51.6 51.2 23.9   

8.3 54.8 66.6 65.7 50.7 73.4 57.6 79.0 58.8 51.1 53.1 45.2 53.0 51.7 46.0 29.9  

8.4 55.9 68.5 66.9 53.1 75.0 59.4 76.5 57.0 51.4 49.9 44.1 56.9 53.6 49.0 46.3 35.0 
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