93 research outputs found

    Full control of Josephson nonlinear processes in superconducting parametric devices for efficient control and readout of quantum circuits

    Get PDF
    In this thesis it is presented a novel superconducting microwave circuit, the Gradiometric SNAIL, that is capable of synthesizing in-situ tunable Hamiltonians with two degrees of freedom. Such a feature allows more flexibility in the choice of linear and non-linear processes that allow coherent elaboration of weak microwave photons. The Gradiometric SNAIL has been employed to implement a resonant parametric amplifier that, with two tuning degrees of freedom, is capable to provide 20dB gain amplification with three-wave mixing over a broad range of operating frequencies and simultaneously suppress the parasitic Kerr effect

    Acquisition Parameters Influence Diffusion Metrics Effectiveness in Probing Prostate Tumor and Age-Related Microstructure

    Get PDF
    : This study aimed to investigate the Diffusion-Tensor-Imaging (DTI) potential in the detection of microstructural changes in prostate cancer (PCa) in relation to the diffusion weight (b-value) and the associated diffusion length lD. Thirty-two patients (age range = 50-87 years) with biopsy-proven PCa underwent Diffusion-Weighted-Imaging (DWI) at 3T, using single non-zero b-value or groups of b-values up to b = 2500 s/mm2. The DTI maps (mean-diffusivity, MD; fractional-anisotropy, FA; axial and radial diffusivity, D// and D┴), visual quality, and the association between DTI-metrics and Gleason Score (GS) and DTI-metrics and age were discussed in relation to diffusion compartments probed by water molecules at different b-values. DTI-metrics differentiated benign from PCa tissue (p ≤ 0.0005), with the best discriminative power versus GS at b-values ≥ 1500 s/mm2, and for b-values range 0-2000 s/mm2, when the lD is comparable to the size of the epithelial compartment. The strongest linear correlations between MD, D//, D┴, and GS were found at b = 2000 s/mm2 and for the range 0-2000 s/mm2. A positive correlation between DTI parameters and age was found in benign tissue. In conclusion, the use of the b-value range 0-2000 s/mm2 and b-value = 2000 s/mm2 improves the contrast and discriminative power of DTI with respect to PCa. The sensitivity of DTI parameters to age-related microstructural changes is worth consideration

    Ferromagnetic Josephson Junctions for High Performance Computation

    Get PDF
    Josephson junctions drive the operation of superconducting qubits and they are the key for the coupling and the interfacing of superconducting qubit components with other quantum platforms. They are the only means to introduce non linearity in a superconducting circuit and offer direct solutions to tune the properties of a superconducting qubit, thus enlarging the possible qubit layouts. Junctions performances and tunability can take advantage of using a large variety of barriers and their special functionalities. We mention pertinent results on the advances in understanding the properties of ferromagnetic junctions, which make possible the use of these devices either as memory elements and as core circuit elements

    Spheroid three-dimensional culture enhances Notch signaling in cardiac progenitor cells

    Get PDF
    Cardiac progenitor cells (CPCs) are a promising candidate for cardiac regeneration, and the interaction between CPCs and their microenvironment can influence their regenerative response. Notch signaling plays a key role in cell fate decisions in the developing and adult heart. Here, we investigated the effect of three-dimensional (3D) spheroid culture, as a model of the 3D microenvironment, on Notch in fetal and adult human CPCs, under room air (20%) and physiological (5%) oxygen tension. Notch signaling is enhanced in 3D spheroids; spheroid culture under 5% O2 further increases Notch signaling enhancement, and might ultimately improve the regenerative potential of CPCs

    Properties of ferromagnetic Josephson junctions for memory applications

    Full text link
    In this work we give a characterization of the RF effect of memory switching on Nb-Al/AlOx-(Nb)-Pd0.99_{0.99}Fe0.01_{0.01}-Nb Josephson junctions as a function of magnetic field pulse amplitude and duration, alongside with an electrodynamical characterization of such junctions, in comparison with standard Nb-Al/AlOx-Nb tunnel junctions. The use of microwaves to tune the switching parameters of magnetic Josephson junctions is a step in the development of novel addressing schemes aimed at improving the performances of superconducting memories.Comment: IEEE Trans. Appl. Supercond. Special Issue ISEC201

    T1 Bladder Cancer: Comparison of the Prognostic Impact of Two Substaging Systems on Disease Recurrence and Progression and Suggestion of a Novel Nomogram

    Get PDF
    Background: The T1 substaging of bladder cancer (BCa) potentially impacts disease progression. The objective of the study was to compare the prognostic accuracy of two substaging systems on the recurrence and progression of primary pathologic T1 (pT1) BCa and to test a nomogram based on pT1 substaging for predicting recurrence-free survival (RFS) and progression-free survival (PFS).Methods: The medical records of 204 patients affected by pT1 BCa were retrospectively reviewed. Substaging was defined according to the depth of lamina propria invasion in T1(a-c) and the extension of the lamina propria invasion to T1-microinvasive (T1(m)) or T1-extensive (T1(e)). Uni- and multivariable Cox regression models evaluated the independent variables correlated with recurrence and progression. The predictive accuracies of the two substaging systems were compared by Harrell's C index. Multivariate Cox regression models for the RFS and PFS were also depicted by a nomogram.Results: The 5-year RFS was 47.5% with a significant difference between T1(c) and T1(a) (p = 0.02) and between T1(e) and T1(m) (p < 0.001). The 5-year PFS was 75.9% with a significant difference between T1(c) and T1(a) (p = 0.011) and between T1(e) and T1(m) (p < 0.001). Model T1(m-e) showed a higher predictive power than T1(a-c) for predicting RFS and PFS. In the univariate and multivariate model subcategory T1e, the diameter, location, and number of tumors were confirmed as factors influencing recurrence and progression after adjusting for the other variables. The nomogram incorporating the T1(m-e) model showed a satisfactory agreement between model predictions at 5 years and actual observations.Conclusions: Substaging is significantly associated with RFS and PFS for patients affected by T1 BCa and should be included in innovative prognostic nomograms

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Transverse momentum, rapidity, and centrality dependence of inclusive charged-particle production in √snn = 5.02 TeV p + Pb collisions measured by the ATLAS experiment

    Get PDF
    Measurements of the per-event charged-particle yield as a function of the charged-particle transverse momentum and rapidity are performed using p + Pb collision data collected by the ATLAS experiment at the LHC at a centre-of-mass energy of √snn = 5.02 TeV. Charged particles are reconstructed over pseudorapidity | η | < 2.3 and transverse momentum between 0.1 GeV and 22 GeV in a dataset corresponding to an integrated luminosity of 1 μb − 1. The results are presented in the form of charged-particle nuclear modification factors, where the p + Pb charged-particle multiplicities are compared between central and peripheral p + Pb collisions as well as to charged-particle cross sections measured in pp collisions. The p + Pb collision centrality is characterized by the total transverse energy measured in − 4.9 < η < − 3.1, which is in the direction of the outgoing lead beam. Three different estimations of the number of nucleons participating in the p + Pb collision are carried out using the Glauber model and two Glauber–Gribov colour-fluctuation extensions to the Glauber model. The values of the nuclear modification factors are found to vary significantly as a function of rapidity and transverse momentum. A broad peak is observed for all centralities and rapidities in the nuclear modification factors for charged-particle transverse momentum values around 3 GeV. The magnitude of the peak increases for more central collisions as well as rapidity ranges closer to the direction of the outgoing lead nucleus
    corecore