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Abstract

Parametric processes play a fundamental role in superconducting quantum
information processing, as they provide a controllable tool for the elabora-
tion of weak, coherent microwave tones down to the single-photon regime.
These effects are in fact employed for many crucial applications, ranging from
high-fidelity quantum limited readout of superconducting qubits to driving
on-demand interactions between storage, processing and readout cavities in
quantum processors. State-of-the-art superconducting devices that enable
in-situ control of parametric processes are based on the Superconducting
Nonlinear Asymmetric Inductive eLement (SNAIL), a superconducting loop
threaded with an external magnetic flux that can be used to select the type
of desired processes. However, with a single flux-tuning knob, the SNAIL
Hamiltonian does not allow to independently choose the efficiency of a three
or four-wave mixing process as well as the linear response. In order to ob-
tain this type of freedom in Hamiltonian tailoring through superconducting
circuits, in this thesis I propose a new device, the Gradiometric SNAIL (G-
SNAIL), as a solution. A G-SNAIL implements an effective Hamiltonian
that can be tuned in situ with two independent magnetic flux biases, thus
providing an additional degree of freedom for the choice of the generated
parametric processes. An experimental demonstration of such a feature is
performed by employing a G-SNAIL as the elementary cell of a doubly flux-
tunable parametric amplifier, capable to deliver a pure, Kerr-free three-wave
mixing amplification at different operating frequencies. This device provides
an experimental demonstration of the advanced Hamiltonian tuning capa-
bilities that can be obtained with two flux-bias degrees of freedom, and is
itself a very good candidate for delivering a noticeable progress in the field
of synthesizing on-demand parametric processes.
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Chapter 1

Main notions on
superconducting circuits

Motivation

In the last 20 years, the field of superconducting quantum information pro-
cessing has evolved very rapidly, and is currently growing even faster. The
key feature for such a massive use of superconducting technologies for the
practical implementation of quantum processors is basically the capability of
synthesizing artificial atoms with superconducting microwave circuits [1, 2]
that can be designed, simulated and characterized with very good precision.
These circuits, namely qubits, are the carriers of binary quantum informa-
tion, being two level systems operating at microwave frequency. In order to
engineer interactions between multiple qubits, as well as reading their state
in a quantum non-demolition manner, big efforts were made in the last 15
years to implement parametric processes between microwave photons and
superconducting devices [3, 4] that can enhance the practical operability of
the qubits. These energy-conserving processes are implemented in supercon-
ductivity by exploiting the nonlinear effects provided by Josephson junctions
and are currently employed in many different applications. In fact, para-
metric processes play key roles in superconducting quantum circuits, ranging
from delivering high fidelity, quantum-limited readout of qubits [5–10], to
the control of interactions between the various cavities used to store, read
and manipulate quantum information [11, 12]. Recently, many different ap-
proaches to have better capabilities of synthesizing on-demand parametric
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processes have been proposed [8, 12–19]. Among these, the state-of-the-art
solution relies on the Superconducting Nonlinear Asymmetric Inductive eLe-
ment (SNAIL) [20], a magnetic flux threaded superconducting loop that can
be tuned in-situ in order to implement a desired combination of linear and
nonlinear responses. The SNAIL has been employed to implement three-wave
mixing (3WM) processes as well as four-wave mixing (4WM) ones, thanks
to its enormous flexibility due to the ease in design and fabrication, as well
as to the tuning via external magnetic flux. The most advanced Quantum
Limited Amplifier (QLA) made with SNAILs is named the SNAIL Paramet-
ric Amplifier (SPA) [21, 22], where an array of 20 SNAILs is embedded in
a microwave resonator to implement a 3WM resonant parametric amplifier.
Despite its enormous success, the SNAIL tunability is still limited by the
constraints of the Josephson effect, that strictly relates the nonlinear expan-
sion coefficients with trigonometric relations. In this thesis work, a solution
to this problem is proposed, employing a novel device called Gradiomet-
ric SNAIL (G-SNAIL). A G-SNAIL is a doubly flux-biased superconducting
loop, whose potential energy function can be controlled by two independent
external magnetic fluxes. This device is capable of delivering a combination
of parametric processes that can be tuned in-situ by an additional degree of
freedom with respect to the standard SNAIL. Its peculiarity allows to design
tunable Hamiltonians with enhanced tuning of linear and nonlinear effects,
for example, delivering Kerr-free 3WM amplification for different operating
frequencies.

Here, the G-SNAIL is employed as the elementary cell of a doubly-
flux tunable SPA, the Gradiometric SNAIL Parametric Amplifier (G-SPA),
demonstrating the advanced Hamiltonian tailoring capabilities that can be
obtained with two external bias knobs. In chapter 1, basics of superconduct-
ing quantum devices are presented, for both linear and nonlinear, Josephson
junctions-based microwave circuits. In chapter 2, it is theoretically shown
how single-flux biased superconducting loops can implement tunable Hamil-
tonians and their limits are explained. Then, the G-SNAIL is introduced
and analyzed in order to demonstrate the advantages that its peculiar addi-
tional tuning degree of freedom can provide. This is particularly remarkable
when G-SNAILs are used to build a G-SPA. In chapter 3, design, simulation
and fabrication methods for a G-SPA are explained. In chapter 4 exper-
imental data on the performances of the fabricated device are presented,
analyzing its linear and nonlinear responses with a careful comparison with
simulations based on the theoretical model presented in chapter 2. The ex-
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periments confirmed that the additional tuning degree of freedom broadens
the Hamiltonian-tailoring capability of superconducting circuits, demonstrat-
ing Kerr-free 3WM operations at different operating frequencies. Finally, in
chapter 5, some applications and future directions are discussed.

1.1 Quantization of superconducting

microwave circuits

Superconducting materials are well suited to be operated at microwave fre-
quencies, as the superconducting gap of common materials as niobium or alu-
minum allows GHz range signals to be treated without breaking Cooper pairs
and, consequently, preserving the superconducting behavior [23]. In this sec-
tion, common microwave superconducting circuits will be introduced, with a
focus on their quantum properties that allow to implement superconducting
quantum devices as qubits and quantum-limited parametric amplifiers.

1.1.1 Harmonic LC oscillator

The simplest superconducting quantum circuit is composed by an inductor
and a capacitor connected in parallel, namely an LC harmonic oscillator.
With reference to figure 1.1, L is the inductance of the linear inductor and
C is the capacitance of the capacitor. The node “a” is called active node,
defined as a node where a purely inductive branch of the circuit meets a
purely capacitive one. Active nodes are valuable tools for the design and
analysis of superconducting quantum circuits. It is useful to introduce the
active node flux φa, defined as [24]

φa(t) =

∫ t

−∞
Va(τ)dτ = Φ(t) (1.1)

where Va is the voltage between node a and ground in figure 1.1. Here, it is
clear how the flux node coincides with the flux threaded into the inductor.
The capacitor charge Q can also be related to φa by the relation

Q(t) = CVa(t) = C
dφa(t)

dt
. (1.2)

From the last two equations, a natural choice is to elect φa as the coordinate of
the system. As Φ = φa and Q = Cφ̇a, this choice makes the potential energy

6



EU of the circuit depend only on the inductor state and the kinetic energy EK
only on the capacitor state. This will have important consequences for the
analysis of superconducting circuits, as any external magnetic field threaded
with an inductive element will appear as a tunable parameter in the potential
energy of the system. The total state of this LC oscillator can be described
by means of the charge Cφ̇a on one of the two plates of the capacitor and
the magnetic flux φa threaded into the inductor. The energies stored into
the two components can be expressed as

EK(φ̇a) =
Cφ̇a

2

2
EU(φa) =

φ2
a

2L
, (1.3)

so the Lagrangian of the LC oscillator reads as follows

Figure 1.1: LC harmonic oscillator. The node where the capacitor and the
inductor are connected is called “active node”. An equivalent flux φa can be
associated to this node.

L =
Cφ̇a

2

2
− φ2

a

2L
(1.4)

and the equation of motion takes the form

d2φa
dt2

+ ω2
0φa = 0, (1.5)

where ω0 = 1/
√
LC is the characteristic frequency of the oscillator.

From the definition of conjugate momentum and the Lagrangian (1.4)
derives that (φa, Q) are a set of canonical coordinates. The Hamiltonian of

7



the system is then derived from a Legendre transformation of Lagrangian
(1.4) and reads

H =
Q2

2C
+
φ2
a

2L
. (1.6)

The quantization of the harmonic oscillator is then performed by promoting
Q and φa to operators Q and φa, satisfying the commutation rule [φa,Q] =
i~. It is useful to introduce charge number operator N = Q/2e and phase
operator ϕ = 2πφa/Φ0, so that the quantized Hamiltonian reads as

H = 4ECN
2 + ELϕ

2. (1.7)

Here, EC = e2/2C is the energy contribution from the capacitor, EL =
(Φ0/2π)2 /L is the contribution from the inductor of the LC oscillator and
Φ0 = h/2e is the magnetic flux quantum. It is further possible to introduce
the creation and annihilation operators a† and a

ϕ = ϕZPF(a+ a†)

N =
1

i
nZPF(a− a†)

(1.8)

where ϕZPF and NZPF are the zero-point fluctuations of phase and number
operators, expressed as

ϕZPF =
2π

Φ0

√
~Z0

2

NZPF =
1

2e

√
~

2Z0

(1.9)

where Z0 =
√
L/C is the intrinsic impedance of the LC resonator. With this

further step, the harmonic oscillator Hamiltonian acquires the well known
form

H = ~ω
(
a†a+

1

2

)
. (1.10)

1.1.2 Josephson junctions and nonlinear elements

The most important electronic component in superconducting quantum in-
formation processing is the Josephson tunnel Junction (JJ). A JJ is obtained
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Figure 1.2: Josephson tunnel junction. Two superconducting electrodes are sep-
arated by a thin oxide that forms a tunnel barrier and a parallel capacitance. The
schematic represents both tunneling and capacitive contributes to the conduction.

when two superconducting electrodes are separated by a thin insulating ox-
ide [25,26] that Cooper pairs can tunnel through, forming a Superconductor-
Insulator-Superconductor (SIS) junction, as in figure 1.2. Given the phases
ϕ1 and ϕ2 of the two superconducting electrodes, the phase drop across the
junction is ϕ = ϕ2 − ϕ1, and the transport properties of the JJ are defined
by the following Josephson equations [25]

I(ϕ) = Ic sinϕ

V =
Φ0

2π

dϕ

dt

(1.11)

where Ic is the critical current of the JJ, defined as the maximum current
that can flow through it without breaking the superconductivity and V is
the voltage drop across the JJ. The physical structure of a JJ results also
in a capacitive contribution to the transport, to be considered in parallel
with the tunneling one. The overall schematic of a JJ is a cross inside a box
(see figure 1.2), representing both tunneling and capacitive contributes to
the transport.

Being a nonlinear element, a JJ can implement many features that are
not possible in bare superconducting metals. This is particularly useful,
for example, to provide the required anharmonicity for fabricating practical
qubits or, more in general, superconducting nonlinear circuits. These can
be designed to simulate Hamiltonians that can implement various operations
such as 3WM or 4WM processes.
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Usually, Josephson junctions are embedded in more complex inductive
nets, where also linear inductors are present. To describe a purely induc-
tive circuit, made by JJs and linear inductors, it is helpful to compute its
equivalent nonlinear inductance. By keeping the same choice of the previous
paragraph, where the phase across an inductance is elected as coordinate,
the energetic contribute of a nonlinear inductance with a phase drop ϕ has
to be considered a pure potential energy U(ϕ). For a physical system, the
internal energy can be computed as

E =

∫
vidve (1.12)

where vi and ve are, respectively, intensive and extensive variables that de-
scribe the system. In figure 1.3 a generic two terminal element (will be called
a dipole in the rest of the manuscript) is represented, characterized by a
current-phase relation I(ϕ). If it gets split in two identical sub-dipoles along
the current-flow line, the phase drop halves while the current remains the
same for each of the two. As a consequence, in this picture, the phase ϕ
behaves as an extensive variable, while current I is the intensive one. Hav-

Figure 1.3: Intensive and extensive variables in a 1D inductive dipole implement-
ing an I(ϕ) relation in the light blue region. If a cut along the current flow line is
made in the middle of the dipole, the phase drop across the two resulting sections
is halved, while the current remains the same. Thus, in this picture, the phase
represents the extensive variable while the current the intensive one.

ing classified the two variables, with reference to the equation (1.12), the
potential energy of a purely inductive, generic dipole is computed as

U(ϕ) =
Φ0

2π

∫
I(ϕ)dϕ. (1.13)
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A first understanding comes from this expression: the minima of the potential
energy U(ϕ) of an inductive dipole correspond to zeroes of the current flowing
through it. In fact, a phase value ϕ0 that minimizes U(ϕ) is solution of the
equation

2π

Φ0

dU

dϕ
(ϕ0) = I(ϕ0) = 0 (1.14)

Moreover, as the differential inductance of a nonlinear element is defined as
dφ/di, and considering that φ = (Φ0/2π)ϕ, the inductance of a generic dipole
is related to its potential energy by the relation

L(ϕ) =

(
2π

Φ0

)2
1

d2U

dϕ2

. (1.15)

This last expression is particularly useful when describing complex dipoles
whose effective inductance cannot be retrieved without considering the non-
linear effects of JJs.

1.2 Superconducting qubits

Quantum computing is based on the processing of quantum information en-
coded in abstract entities known as qubits. A qubit is a quantum system
that lives in a two-dimensional Hilbert space. Its state can then be described
as

|ψ〉 = α |0〉+ β |1〉 (1.16)

where α and β are complex coefficients, satisfying the relation |α|2 + |β|2 = 1
and the eigenstates of the qubit |0〉 and |1〉 represent the possible outcomes
of an ideal measurement on the system. As |α| and |β| are constrained by a
pitagorean relation, and the measurement of a wavefunction is independent
from any global phase, it is possible to define an angle θ and a phase φ such
that the wavefunction (1.16) can be expressed as

|ψ〉 = cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉 (1.17)

Then, being described by two variables, the wavefunction |ψ〉 lives on the
surface of a 2-D manifold, namely the Block sphere, where all the possible
superpositions of the eigenstates |0〉 and |1〉 are represented as a function of
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Figure 1.4: Transmon qubit. Shunting a Josephson junction with a large ca-
pacitance such that EJ/EC ≈ 50 makes the device very resilient to charge noise
and, at the same time, keeps enough anharmonicity such that is possible to isolate
the 0 → 1 transition of the circuit and employ the first two energy levels of the
transmon as a qubit.

θ and φ. In practice, a qubit can be implemented by any two-level system
present in nature, for example photon polarization, or an artificial one, as a
superconducting anharmonic oscillator. Usually, artificial two-level systems
are extracted from a much richer energy level structure, where the ground
level and the first excited one are elected as |0〉 and |1〉 states, represent-
ing the eigenstates of a qubit. It is then important to be able to separate
these two levels from all the others, in order to avoid unwanted transitions of
the physical system that can push it out from the two-dimensional subspace
where it is operated as a qubit. Such a separation can be obtained at hard-
ware level, for example, when a qubit is implemented by using the first two
levels of a nonlinear resonator. In fact, the anharmonicity makes possible
to isolate two contiguous level whose population can be controlled with a
resonant coherent drive that won’t interact with any other possible transi-
tion of the system. The state-of-the-art qubits are based on the transmon
circuit [1, 2], represented in figure 1.4 on the left. Thanks to the presence
of a nonlinear inductance implemented by a Josephson junction, the energy
levels of a transmon are not equally spaced (see right panel of figure 1.4)
as in an harmonic oscillator. As a consequence, the first two levels of the
transmon can be employed as |0〉 and |1〉 eigenstates of a qubit, resonating at
a frequency ω01 as in the right panel of figure 1.4. Derived from the Cooper
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Figure 1.5: Dispersive coupling between a linear resonator and a transmon qubit.
If transition frequency of a qubit and resonance frequency of a cavity are detuned,
these can be dispersively coupled in such a way that the resonance frequency of
the linear resonator is “dressed” by the state of the qubit, but not in resonance
with its transition. This allows an indirect, quantum non demolition measurement
of the qubit state by probing the resonance frequency of the dressed resonator,
whose amplitude and phase responses depend on the two-level system.

pair box [27], the transmon is characterized by the Hamiltonian

H = 4ECN2 − EJ cosϕ (1.18)

and operates in an intermediate regime where charge energy EC = e2/2C is
much smaller than Josephson energy EJ = Φ0Ic/2π. This makes the circuit
very resilient to charge noise, as the charge dispersion of the energy levels

of Hamiltonian (1.18) is proportional to exp
(
−
√

8EJ/EC

)
[1, 2]. On the

other hand, the relative anharmonicity of the transmon αr = (ω12−ω01)/ω01

decreases with a power law in EJ/EC [1, 2] instead than exponentially as
charge dispersion. Here, ωmn is the resonance frequency corresponding to a
transition between levels m and n. The ratio EJ/EC is usually 50 or more
for a transmon, balancing charge noise robustness and anharmonicity. The
state of a transmon can be experimentally measured, for example, by cou-
pling it to a bus resonator that is far detuned from the |0〉 → |1〉 transition
of the qubit. This type of coupling is called “dispersive coupling”, and can
be obtained with a circuit schematic as in the left panel of figure 1.5. Here,
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the bus resonator is made with linear inductance Lr and a capacitance Cr,
corresponding to a bare resonance frequency ωr = 1/

√
LrCr, and it is cou-

pled to a transmon qubit via the coupling capacitor CC . The state of the
bus resonator is described in terms of a and a† operators, while the state
of the transmon qubit is described by the σz Pauli operator. After some
manipulations [3], the Hamiltonian of the circuit reads as follows

H = ~
(
ωr +

g2

∆
σz
)

a†a +
~
2

(
Ω +

g2

∆

)
σz, (1.19)

where g is the coupling strength between the transmon qubit and the res-
onator, mainly depending on capacitance CC, Ω is the vacuum Rabi oscilla-
tion frequency of the qubit and ∆ = Ω− ωr is the qubit-resonator detuning.
From Hamiltonian (1.19) it arises that the resonance frequency of the bare
resonator ωr is shifted by the qubit by a factor ±g2/2∆, depending on state
of the qubit. Thus, when probing the reflection coefficient S(ω) of the cir-
cuit in figure 1.5, the response (right panel of the same figure) will show a
resonance at ωg = ωr + g2/2∆ if the qubit collapsed in the |0〉 state, or at
ωe = ωr − g2/2∆ if the qubit collapsed in the |1〉 state at the time of the
measurement. Then, by measuring the frequency response of the resonator
at a particular frequency, where either phase or amplitude response is highly
sensitive to the qubit state, it is possible to know the eigenstate in which the
qubit collapsed at the time of the measurement. Being this an indirect mea-
surement of the σz operator, and because σz commutes with the Hamiltonian
of the system (1.19), this interaction represents a quantum non-demolition
measurement of the two-level system [3, 4]. For such a measurement to be
effective, it is required that the energy levels of the circuit are not populated
by thermal photons. This is ensured as superconducting quantum circuits
are operated on the 20 mK stage of a dilution refrigerator, corresponding to
a thermal energy of about 2.8×10−25 J, capable of exciting transitions in the
order of 400 MHz. As qubits and resonators frequencies are usually > 4 GHz,
the 20 mK temperature is low enough to not affect the correct operation of
the devices. Moreover, it is important to highlight that the resonator should
be probed with weak microwave coherent signals, corresponding to an aver-
age photon number n̄ ≈ 1, in order to not excite unwanted transitions of the
qubit. This poses the problem of how to detect such weak microwave tones
with an high Signal to Noise Ratio (SNR), in order to implement an high
fidelity readout that is not disturbed by noise. An answer to this question
comes with the introduction of QLAs [7, 10, 28] that can detect and amplify
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Figure 1.6: Simplified schematic for the dispersive readout of a transmon qubit.
A weak, coherent microwave tone is sent to the resonator at its characteristic
frequency ωr = 1

√
LrCr. The pulse gets reflected by the resonator, with a phase

that depends on the measured value of σz operator of the qubit, thus encoding
the result of a projective measurement of the qubit state. The ouput pulse is
then amplified with a Quantum Limited Amplifier (QLA), in this case operated in
reflection, in order to increase the readout fidelity.

single photon coherent signals, preserving information on both their ampli-
tude and phase, with the least minimum amount of added noise predicted by
quantum mechanics (corresponding to half photon). These amplifiers rely on
nonlinear parametric processes provided by Josephson junctions based cir-
cuits, properly engineered to work as three-wave mixers or four-wave mixers.
QLAs can be operated, for example, as in figure 1.6, where a QLA operated
in reflection amplifies coherently the pulse reflected by a resonator that is
dispersively coupled to a qubit, increasing the readout fidelity.

Another possible way to implement superconducting qubits uses the idea
of building high-Q linear microwave cavities with superconducting materials,
for example aluminum, and employ their lower energy levels in order to
encode quantum information or a superposition of coherent states [29]. In this
case, as absorption and emission spectra are degenerate as in any harmonic
oscillator, a transmon is coupled to the 3D cavity in order to distinguish
the occupied state at the time of readout. With these 3D cavities it is
possible to build very clean quantum systems that can implement complex
algorithms with very high fidelity. A key ingredient for this operations is
the capability of driving on-demand interactions between multiple cavities,
again using properly engineered parametric processes. For example given
two cavities A and B (see figure 1.7), each one encoding a two-level-system
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Figure 1.7: Engineering beam-splitter interaction between two superconducting
cavities at different operating frequencies. Cavities A and B are coupled to a non-
linear device (a SNAIL in the figure), capable of three-wave mixing operations.
When pumped with a microwave signal, oscillating at a frequency |ωa − ωb|, the
device can implement an effective beam-splitter interaction that mediates the ex-
change of a single photon between the two cavities.

with its ground and first excited state, it is possible to mediate a coherent
photon exchange between them. Such an exchange can take place if the two
cavities interact via a beam-splitter Hamiltonian of the type

HBS = a†b− b†a (1.20)

where a and b are annihilation operators referring to cavities A and B, re-
spectively. The interaction (1.20) can be engineered with a superconducting
dipole capable of 3WM parametric processes, for example a SNAIL [20].
When such a dipole is coupled to both cavities, as in figure 1.7, it can be
pumped with a microwave tone oscillating at a frequency ωp = |ωa − ωb|,
where ωa and ωb are the transition frequencies of the two-level-systems en-
coded in cavities A and B, respectively. In this way, the total Hamiltonian
of the system reads

H = ~ωaa†a+ ~ωbb†b+ g(a†b− b†a) (1.21)

where g is a coupling factor that depends, in general, by the coupling between
the 3WM dipole (supposed identically coupled to both cavities for simplicity)
and the strength of the pumping tone at frequency |ωa − ωb|. Hamiltonian
(1.21) describes a dynamic where, if for example cavity A is excited with one
resonant photon and the cavity B is in the vacuum state, with a coupling
g 6= 0 the photon in cavity A can be destroyed and, consequently, a photon in
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cavity B is created. This mechanism applies as well if a photon in cavity B,
supposed excited, need to be transferred in cavity A, supposed in the vacuum
state. This is just another, among many, of the applications that parametric
processes enable in superconducting quantum information processing.
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Chapter 2

Superconducting parametric
circuits

2.1 Parametric processes with superconduct-

ing circuits

Parametric processes are light-matter interactions where the material’s quan-
tum state remains unchanged. As a result, coherent electromagnetic signals
can be elaborated by these processes without any induced decoherence. This
peculiarity made them lead actors in quantum information processing, where
they are employed to implement many important functions as coupling be-
tween cavities, quantum limited amplification, entanglement and so on.

First introduced in nonlinear optics [30], parametric processes have been
enabled also on superconducting platforms at microwave frequencies [7, 31–
33], with particular applications in near-quantum-limited amplification [5,
6, 8, 9, 13, 15, 17, 20, 34–36]. This breakthrough has been possible thanks to
Josephson tunnel junctions, whose tunable flux-current relation can imple-
ment different combinations of linear and nonlinear effects with a very precise
control provided by external applied fields. In fact, a superconducting loop
embedding multiple JJs and threaded by an external static magnetic flux Φe

(see figure 2.1) operating at GHz frequency can be described by the relation

Φµw(t) =
∑
n

an(Φe)I
n
µw(t) (2.1)

where Iµw and Φµw are microwave perturbations of the current and equiv-
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alent flux of the the dipole, respectively. Relation (2.1) clearly shows how

Figure 2.1: Superconducting loop with two inductive branches a and b, and
threaded by an external magnetic flux Φe. Each branch is itself a dipole charac-
terized by an Is(ϕs) relation.

Josephson based circuits are capable to implement nonlinear optics effects at
GHz frequencies, mimicking the optical response of a nonlinear media

p(t) =
∑
n

χnE
n(t) (2.2)

where p is the electric polarization density, E is the electric field and χn
are susceptibility tensors that characterize the media. In expression (2.1),
the microwave susceptibilities an(Φe) are variable coefficients that can be
flux-tuned to select the desired nonlinear effects and, in general, depend on
the overall design of the circuit. It is possible to design such a circuit in
order to have a predominant three-wave mixing term a2(Φ̄e) or four-wave
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mixing term a3(Φ̄e) when flux biased in a sweet spot Φ̄e. Moreover, its
linear response a1(Φ̄e) can be designed to match a required value in order to
fulfill specifications regarding impedance matching or resonance frequency of
a parent device. From all these considerations, it is quite clear how powerful
this approach is: by properly engineering a flux-biased superconducting loop,
it is possible to synthesize a generic nonlinear media at microwave frequencies
providing the desired response for a given application. In order to represent
the behavior of the circuit on the left side of figure 2.1, one would first write
the total potential energy of each branch as a sum of the energies of the
individual components

Us(ϕs) =

(
Φ0

2π

)2 ϕ2
Ls

(ϕs)

2Ls
−

Ns∑
n=1

EJs
n

cosϕsn(ϕs) (2.3)

where linear inductor fluxes ϕLs and phase differences across the junctions ϕsn
on branch s can be expressed as a function of the branch flux ϕs only. Unfor-
tunately, it is not always possible to find analytical expressions for ϕLs(ϕs)
and ϕsn(ϕs), as these are in general solutions of the nonlinear algebraic system

ϕLs(ϕs) +
Ns∑
n=1

ϕsn(ϕs) = ϕs

ϕLs(ϕs)− βs1 sinϕs1(ϕs) = 0

...

ϕLs(ϕs)− βsNs
sinϕsNs

(ϕs) = 0

(2.4)

where βsn = 2πLsIJs
n
/Φ0. First equation of system (2.4) relates the branch

phase to the phases across the individual components and the remaining
Ns equations state that the current is the same in each component of the
branch. In total, these Ns+1 equations allow to express all the Ns+1 phases
across the elements in branch s as a function of ϕs only, thus providing a
more accessible expression for the branch potential energy. For numerical
computation, it might be easier to obtain the branch potential energy as

Us(ϕs) =
Φ0

2π

∫
Is(ϕs)dϕs (2.5)

when one expresses the branch current as

Is(ϕs) =
Φ0

2π

ϕLs(ϕs)

Ls
. (2.6)
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Once an expression for each branch potential energy has been found,
and keeping in mind phase conservation equations arising from the circuit
schematic in the right panel of figure 2.1

ϕa = ϕ+
ϕe
2

ϕb = ϕ− ϕe
2

(2.7)

where ϕe = 2πΦe

Φ0
, the total potential energy of the flux-threaded supercon-

ducting loop reads as follows

U(ϕ) = Ua

(
ϕ+

ϕe
2

)
+ Ub

(
ϕ− ϕe

2

)
. (2.8)

It is then possible to find an operating point ϕ0 for the superconducting loop
such that

2π

ϕ0

dU

dϕ

∣∣∣∣
ϕ0

= Ia

(
ϕ0 +

ϕe
2

)
+ Ib

(
ϕ0 −

ϕe
2

)
= 0. (2.9)

In general, equation (2.9) admits more than one solution, and there are pre-
cise design criteria in order to have a single or multiple minima potential.
Once an operating point has been selected, one can finally expand the po-
tential as

U(ϕ) =
∞∑
n=2

cn(ϕe)

n!
(ϕ− ϕ0)n (2.10)

where ϕ0 is the equilibrium point of the system around which the potential
energy has been expanded, and is in general a function of Φe. Note that
Taylor expansion (2.10) starts from n = 2, as the offset c0 doesn’t contribute
to the device dynamics and c1 = (dU/dϕ) |ϕ0 = 0 as of equation (2.9).
Inserting such a tunable nonlinear inductance in an LC resonator as in figure
2.2 the following Hamiltonian, expanded up to the fourth order, builds up

H = 4ECN2 +
c2(ϕe)

2!
ϕ2 +

c3(ϕe)

3!
ϕ3 +

c4(ϕe)

4!
ϕ4 + . . . (2.11)

where cn(ϕe) are expansion coefficients of the resonator potential energy
(2.10), N and ϕ are the operators defined in the first chapter. Introduc-
ing creation and annihilation operators a† and a as for harmonic oscillators,
the Hamiltonian (2.11) acquires the following form

H = ~ω(ϕe)a
†a+ g3(ϕe)(a+ a†)3 + g4(ϕe)(a+ a†)4 + . . . (2.12)
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Figure 2.2: Tunable nonlinear LC resonator. A purely inductive nonlinear super-
conducting loop threaded by an external phase bias ϕe is shunted by a capacitance
C, providing a kinetic component to implement a nonlinear oscillator.

where

ω(ϕe) =

√
c2(ϕe)

C

g3(ϕe) =
c3(ϕe)

2c2(ϕe)

√
ω(ϕe)EC

~

g4(ϕe) =
c4(ϕe)

c2(ϕe)
EC

(2.13)

C being the capacitance of the resonator.
In the Hamiltonian (2.12), coefficient g3(ϕe) enables a trilinear term of

the type a2a†, coming from the expansion of (a + a†)3. Such a term can
provide three-wave mixing operation when, for example, a = s+i+αpe

iωptI,
where s and i are annihilation operators referring to signal and idler tones,
respectively, and αpe

iωptI represents a strong, classical pump tone with am-
plitude αp and frequency ωp. Moreover, the coefficient g4(ϕe) can provide
four-wave mixing behavior as well as other terms that can be poisonous if
a pure three-wave mixing is desired. Among these, Kerr effect [21, 22, 37] is
one of the most critical to deal with, as it strongly affects the performances
of superconducting three-wave mixing circuits in many applications. Kerr
mainly arises from the term (a+ a†)4 of the Hamiltonian (2.11), containing
operators of the type (a†a)2 that can provide a photon number dependence
of the resonance frequency ω of a nonlinear LC oscillator. In the following
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section, the main 3WM-ready superconducting loops capable of Kerr-free
operations will be described, namely the rf-SQUID and the SNAIL.

2.1.1 Three-wave mixing in superconductivity

As introduced in the last section, three-wave mixing processes can be cal-
ibrated in superconducting nonlinear loops when they implement a third
order nonlinearity c3 in an effective potential energy U(ϕ). A first example
of this comes from the flux-threaded rf-SQUID (figure 2.3) that implements
the potential energy

U(ϕ)

EL
=

1

2
ϕ2 − β cos (ϕ− ϕe) (2.14)

where the condition β = EJ/EL < 1 needs to be satisfied in order to have a

Figure 2.3: Flux-threaded rf-SQUID. A Josephson junction with energy EJ is
shunted by a linear inductance L and the resulting loop is threaded by an external
magnetic flux.

single-minimum potential energy function for each value of ϕe. The useful-
ness of an external flux is immediately clear once one notices that, for ϕe = 0,
the function (2.14) admits the minimum ϕ0 = 0 and the three-wave mixing
coefficient c3 = 0 in its proximity. For this reason, the only way to tune up
three-wave mixing is to control the operation of an rf-SQUID by the appli-
cation of an external flux. On this basis, a three-wave mixing traveling wave
parametric amplifier was proposed and implemented by Zorin et al. [14, 15],
confirming the operability of rf-SQUIDs for 3WM. It is worth noticing that,
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Figure 2.4: Third and fourth order expansion coefficients as a function of external
flux ϕe for the potential energy of an rf-SQUID. Because there is only one tunable
inductive branch, an rf-SQUID always offers maximum c3 when c4 = 0 (purple
line).

because the rf-SQUID has only one tunable inductive branch (the contribu-
tion of linear inductor does not vary with external flux), coefficients c3 and
c4 are only provided by the expansion of the same cos(ϕ− ϕe) term in the
function (2.14), thus when one has maximum magnitude the other is zero,
and vice-versa. Provided that ϕ0 is an operating point, the coefficients are
expressed as

c3 = −β sin [ϕ0(ϕe)− ϕe]
c4 = −β cos [ϕ0(ϕe)− ϕe]

(2.15)

and the trigonometric relation c2
3 + c2

4 = β2 holds. These coefficients are
plotted as a function of ϕe in figure 2.4 where it is clear how, when c3 is max-
imum, c4 is suppressed and viceversa. Another superconducting loop that
was recently used for 3WM operations in superconducting quantum informa-
tion processing is the Superconducting NonLinear Asymmetric Inductive El-
ement (SNAIL) [20–22], where the linear branch of the rf-SQUID is replaced
by an array of 3 Josephson junctions (purple JJs in figure 2.5) with energy
EJ, while the small junction (in black) has an energy αEJ where α ≤ 0.3
to implement a single-minumum potential energy. A SNAIL implements the
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potential energy
U(ϕ)

EJ
= −3 cos

ϕ

3
− α cos (ϕ− ϕe) (2.16)

where the linear term is substituted with a weakly nonlinear one. This term
can now contribute to the nonlinear expansion coefficients as a function of
external magnetic flux ϕe. Such a configuration extends the possible choices

Figure 2.5: SNAIL tunable inductive loop. A small JJ is shunted with an array
of three bigger JJs. The ratio between the Josephson energy of the small JJ and
each of the big JJs is α.

of c3 and c4 coefficients because of the presence of tunable inductances in
both branches of the loop. In fact, for a SNAIL, these coefficients are given
by

c3 = −
sin

[
ϕ0(ϕe)

3

]
9

− α sin [ϕ0(ϕe)− ϕe]

c4 = −
cos

[
ϕ0(ϕe)

3

]
27

− α cos [ϕ0(ϕe)− ϕe]

(2.17)

so is possible to choose α if a given combination of c3 and c4 is required for the
desired behavior of the circuit. In figure 2.6 it is shown how, with a SNAIL,
c4 6= 0 when c3 is maximized, a feature not available with an rf-SQUID. With
a SNAIL, is easy to implement the required value for the design parameter
α, since the Josephson junction energy can be tuned with higher precision
than the linear inductance of a wire. This advantage directly comes from
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Figure 2.6: Nonlinear expansion coefficients for a SNAIL. The presence of two
nonlinear branches allows to tune the relation between c3 and c4 in order to mix
their values without the typical contraint of an rf-SQUID.

the fact that JJs offer a purely kinetic inductance, thus there is no magnetic
field involved into the inductive behavior. In fact, the inductance of a wire
inductor strongly depends on how the magnetic field lines interact with the
surrounding environment, and could require non-trivial magnetic simulations
to be extracted with high accuracy. This is even more true in superconducting
materials, where Meissner effect needs to be taken into account to compute a
realistic profile of the magnetic field. These peculiarities made the SNAIL a
perfect candidate to implement the first Kerr-free three-wave mixing dipole
that currently represents the state-of-the-art element for parametric processes
with superconducting circuits [20]. For example, most of the resonant 3WM
quantum-limited parametric amplifiers are made with SNAILs [21, 22, 37]
and, recently, the functionality of a 4WM TWPA based on SNAILs with
unprecedented performances has been demonstrated [35].

Despite their wide operability, rf-SQUIDs and SNAILs suffer from a tun-
ability constraint that arises from the trigonometric nature of the Josephson
effect. In fact, both potential energies (2.14) and (2.16) have their flux-
tunability embedded in the cos (ϕ− ϕe) term that, if expanded with trivial
trigonometric relations, becomes

cos(ϕ− ϕe) = cosϕe cosϕ+ sinϕe sinϕ. (2.18)

This expression clearly shows how, with these two devices, is not possible to
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fully exploit the trigonometric nonlinearities cosϕ and sinϕ offered by the
Josephson effect. In fact, as clear from expression (2.18), these two terms
are respectively tuned with external flux by the bias coefficients cosϕe and
sinϕe, that are strictly linked by pitagorean relation sin2 ϕe + cos2 ϕe = 1.

In the rest of this manuscript, an approach to overcome this constraint will
be introduced and experimentally demonstrated, constituting the original
contribute of the author to the field.

2.2 Gradiometric SNAIL

As explained in the previous section, superconducting loops are key ingredi-
ents for implementing parametric processes but, with only one external flux
bias, is not possible to completely explore the nonlinear effects provided by
Josephson junctions. For this effort, it is possible to build a dipole made
by a minimum of three branches that enclose at least two independently
flux-biased superconducting loops.

A first demonstration of this approach has been performed by the author
in [18, 38], where a symmetric rf-SQUID has been used as a building block
of a traveling wave parametric amplifier. This work was inspired by the
previously mentioned rf-SQUID based TWPA by Zorin [14, 15], and it was
successfully proved that 3WM amplification can be provided with a doubly
flux-biased superconducting dipole made by two loops. In this section, the
gradiometric SNAIL will be introduced as an elementary block of a two-flux-
biased superconducting circuit.

The Gradiometric SNAIL (G-SNAIL) is a SNAIL with two loops. Its
concept is inspired by the symmetric rf-SQUID [18,38] and the Asymmetric
Threaded SQUID [39]. A G-SNAIL, represented in figure 2.7, is a simple two-
loops superconducting dipole made by Josephson junctions, essentially built
by “mirroring” a SNAIL with respect to the weakly nonlinear branch. The
JJs on the side branches (colored in black in figure 2.7) are supposed equal,
each one with a Josephson energy equal to αEJ , where EJ is the Josephson
energy of a junction in the central branch (colored in purple in figure 2.7).
This forms a two-loops device that can be flux-biased with two independent
external magnetic fluxes. G-SNAIL potential energy is written as

U(ϕ)

EJ
= −3 cos

ϕ

3
− α [cos (ϕ− ϕ1) + cos (ϕ− ϕ2)] (2.19)
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Figure 2.7: Gradiometric SNAIL. A symmetric dc-SQUID is shunted in the
center with an array of three JJs, in order to form two superconducting loops.
Each loop is then flux-threaded with two independent magnetic fluxes ϕ1 and ϕ2.

that, by introducing the sum and difference of bias phases

ϕ+ =
ϕ1 + ϕ2

2

ϕ− =
ϕ1 − ϕ2

2

(2.20)

can be expressed in the compact form

U(ϕ)

EJ
= −3 cos

ϕ

3
− 2α cosϕ− cos (ϕ− ϕ+). (2.21)

This expression is equivalent to the SNAIL potential energy (2.16), when one
introduces effective quantities

αeff = 2α| cosϕ−|

ϕeff =

{
ϕ+ if cosϕ− > 0

ϕ+ + π if cosϕ− < 0

(2.22)

so reads as follows

U(ϕ)

EJ
= −3 cos

ϕ

3
− αeff cos (ϕ− ϕeff). (2.23)

It is important to notice that expression for αeff in (2.22) does not only
include the geometrical α coefficient that has a direct correspondence with
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the SNAIL α as in equation (2.16), but also an in-situ tunable coefficient
cosϕ−. For this reason, G-SNAIL flux tunability is extended with respect
to a SNAIL, as α is now a parameter that can be externally modified. As
a consequence, the whole term cosϕ− cos (ϕ− ϕ+) participates to the choice
of expansion coefficients for the potential energy. In fact, it can be expressed
as

cosϕ− cos (ϕ+ ϕ+) = ce(ϕ+, ϕ−) cosϕ+ c0(ϕ+, ϕ−) sinϕ (2.24)

where the bias parameters are defined as

ce(ϕ+, ϕ−) = cosϕ− cosϕ+

co(ϕ+, ϕ−) = cosϕ− sinϕ+.
(2.25)

Introducing the plane (ce, co), represented in figure 2.8, the expressions (2.25)
describe a circle on such a plane when ϕ+ and ϕ− vary in the [0, 2π) inter-
val. From this representation is immediately clear the advantage of using a

Figure 2.8: Bias coefficients plane. With a G-SNAIL is possible to operate over
the whole solid circle, while a SNAIL only allows operating points belonging to
the circumference.

doubly-flux-biased dipole: it can be operated on a 2D manifold instead of
a single line. The G-SNAIL adds a radial degree of freedom to the stan-
dard SNAIL tunability on the bias coefficients plane in figure 2.8, with the
capability of implementing a whole family of devices with a different design
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parameter α within a single circuit. Note that a negative value of αeff is
equivalent to a π shift in the effective flux ϕeff . Nonlinear expansion c3 and
c4 coefficients are, now, function of two bias parameters

c3 = −
sin

[
ϕ0(ϕ+, ϕ−)

3

]
9

− 2α cosϕ− sin [ϕ0(ϕ+, ϕ−)− ϕ+]

c4 = −
cos

[
ϕ0(ϕ+, ϕ−)

3

]
27

− 2α cosϕ− cos [ϕ0(ϕ+, ϕ−)− ϕ+]

(2.26)

so a G-SNAIL has a much wider nonlinear tunability with respect to single-
loop dipoles as rf-SQUIDs or standard SNAILs. In figure 2.9, a plot of
expressions (2.26) clearly shows the enhanced tuning capabilities of the G-
SNAIL, allowing to explore many combinations of nonlinear effects that were
before constrained by the presence of a single flux-bias knob. An interesting

Figure 2.9: Nonlinear coefficients c3 and c4 for a G-SNAIL. With two flux-bias
knobs is possible to tune 3WM (c3) and 4WM (c4) on a 2D space, allowing different
combinations of nonlinear effects to be implemented on a single device.

feature of the G-SNAIL is the capability to keep one of the two coefficients
to zero, for example, c4, and still have a degree of freedom for tuning c3. To
show this, it is possible to define a curve γ0 on the flux-bias plane (ϕ+, ϕ−),
parametrized with a curvilinear parameter s ∈ [0, 1], such that c4 = 0 on
each point of this curve, as in the left panel of figure 2.10. The right panel of
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Figure 2.10: c4 = 0 curves. 3WM coefficient c3 can vary on a significant range
when evaluated on the γ0 curve such that c4 = 0 on its points.

the same figure shows how c3 can vary over a significant range ∼ (−2α, 2α)
when evaluated along a c4 = 0 curve.

In the following section, a superconducting resonator made by G-SNAILs
will be discussed. It will be shown how its 2D flux-bias tunability can imple-
ment Kerr-free 3WM operations over a continuum of operating frequencies.

2.3 Gradiometric SNAIL Parametric Ampli-

fier

A possible way to operate a superconducting inductive loop as a parametric
amplifier is to embed it in a LC resonator, as in figure 2.2, in order to efficently
implement 3WM operations around a resonance frequency ω. In this section,
the Gradiometric SNAIL Parametric Amplifier (G-SPA) will be introduced,
as an enhanced version of the SNAIL Parametric Amplifier (SPA) [21] that
represents the state-of-the-art 3WM resonant parametric amplifier for the
readout of superconducting qubits [22].

The fundamental block af a G-SPA is an array of M identical G-SNAILs
(see figure 2.11) that are flux-biased with two independent magnetic fluxes.
The fluxes can be delivered, for example, by two flux lines in which two
currents are injected by independent generators. Considering the potential
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Figure 2.11: Array of G-SNAILs with two dedicated flux lines. Arraying allows
to increase the maximum value of tunable inductance and, at the same time, dilute
nonlinearity of the array. On the sides of the array, two flux-lines are driven by
two independent current generators.

energy of a single G-SNAIL as in (2.21), for the array in figure 2.11 we have

Ua(ϕ)

EJ
= −M

[
3 cos

ϕ

3M
+ αeff cos

( ϕ
M
− ϕeff

)]
(2.27)

where ϕ is now the total phase drop across the array. Across each G-SNAIL,
the phase drop will be ϕ/M in the hypotesis of identical cells. To understand
the effect of arraying, let’s compute the nonlinear expansion coefficients once
a ϕ0 equilibrium phase point is known. Following the same technique used
for G-SNAIL, we have

c3 = − 1

M2


sin

[
ϕ0(ϕ+, ϕ−)

3M

]
9

+ 2α cosϕ− sin

[
ϕ0(ϕ+, ϕ−)

M
− ϕ+

]
c4 = − 1

M3


cos

[
ϕ0(ϕ+, ϕ−)

3M

]
27

+ 2α cosϕ− cos

[
ϕ0(ϕ+, ϕ−)

M
− ϕ+

]
(2.28)

From there expressions for c3 and c4, it is clear how the presence of the array
of M cells helps to suppress high order nonlinearities with a power law in M .
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This is particularly useful if one aims at hitting a pure 3WM operation where
the leading nonlinear term is c3, thus it is desirable to suppress nonlinearities
of order > 3. Arraying has also effect on the linear inductance of the array,
defined as

La =

(
Φ0

2π

)2(
d2U

dϕ2

)−1

[ϕ0(ϕ+, ϕ−)], (2.29)

increasing its value by a factor of M

La =
MLJ

cos

[
ϕ0(ϕ+, ϕ−)

3M

]
3

+ 2α cosϕ− cos

[
ϕ0(ϕ+, ϕ−)

M
− ϕ+

] (2.30)

where LJ = (Φ0/2π)2 1
EJ

is the equivalent inductance of a JJ in the central
branch (colored in purple in figure 2.11) of each G-SNAIL forming the array.
This come particularly handy if, for example, one would like to tune the
resonance frequency of an LC resonator where the array is embedded. A
proper choice of M can in fact increase the overall inductance without the
need to directly increase the individual inductances of the junctions in the
device: as linear Josephson inductance is inversely proportional to the critical
current, is not possible to increase it without affecting the current dynamic
range.

Figure 2.12: Gradiometric SPA. A doubly flux-biased dipole made with G-
SNAILs, represented by an inductance crossed by two arrows, is placed in the
middle of a λ/2 resonator that is capacitively coupled to two ports. On the left,
a strongly coupled signal port is employed to feed the probe signal to the device
while, on the right, a weakly coupled pump port is used to excite nonlinear pro-
cesses as 3WM, for example, to generate amplification at signal port.

In order to implement a device that can be operated around a particular
frequency ω with a certain bandwidth ∆ω, it is practical to embed our array
of M G-SNAILs inside a microwave resonator with a certain bare resonance
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frequency ω0 and a coupling k to the input port (probed in reflection). To
maximize the interaction between the electromagnetic field of the resonator
and the nonlinear dipole, it is important to place it in correspondence of
a current antinode of the resonator. Opting for a capacitively coupled λ/2
resonator, this will have maximum current in the middle, and that is where
the dipole should seat. This thumb rule for the placement of a dipole in-
side a resonator is only valid if the dipole is much smaller than λ. In this
G-SPA, while the resonator length L will be of the order of few millimiters,
the dipole length will not exceed 200 µm. Consequently, it can be modeled
as a lumped element and will have to be centered on a current antinode
for optimal interaction with the electromagnetic field of the microwave res-
onator. A simplified schematic of the complete device is represented in figure
2.12 and is including a signal port (left, strongly coupled) and a pump port
(right, weakly coupled) to easily deliver different microwave tones. Near the
resonance frequency, the λ/2 resonator can be modeled by a lumped element
LC series resonator, so a lumped circuit model can be made for the G-SPA.
From the lumped model in figure 2.13, it is straightforward to compute the

Figure 2.13: Lumped element model of a Gradiometric SPA. The λ/2 resonator
is represented by a linear inductance L and a capacitance C. The array of G-
SNAILs, represented by the inductance LJ tunable by two external parameters
(two arrows), is electrically in series with the linear inductance of the resonator.

Hamiltonian of the G-SPA, once the active-node phase ϕ has been identified
as in figure 2.13. Following the procedures described in the first chapter, the
Hamiltonian of the device reads as

H = ~ω(ϕ+, ϕ−)a†a + g3(ϕ+, ϕ−)(a + a†)3 + g4(ϕ+, ϕ−)(a + a†)4 (2.31)
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where ω, g3 and g4 are variable with the bias fluxes (ϕ+, ϕ−). The potential
energy of the lumped G-SPA can be written as

U(ϕ) =
1

2
EL[ϕ− ϕa(ϕ)]2 + Ua [ϕa(ϕ)] (2.32)

where the relation ϕa(ϕ) is implicitly defined from the current conservation
equation

EL(ϕ− ϕa)−
dUa
dϕa

= 0. (2.33)

This equation is derived from the consideration that the resonator linear
inductance L and the G-SNAILs array tunable indutance LJ are in series,
as in figure 2.13, thus the current flowing in each of them has to be the
same. In order to obtain a representation of these three coefficients in terms
of expansion coefficients of the G-SNAILs array, the procedure in [21] is
described. It is useful to introduce the participation ratio p of the array of
G-SNAILs, defined as

p ,
dϕa
dϕ

=
EL

EL +
d2Ua
dϕ2

a

=
La

L+ La
(2.34)

This quantity acts as a phase divider coefficient that describes how the phase
drop ϕa is linked to the resonator phase ϕ, when the circuit is supposed to
be linear. The expansion coefficients c̃n = 1

n!
dnU
dϕn |ϕ0

of the function (2.32)
can now be computed. First order coefficient c̃1 can be expressed as

c̃1 = EL[ϕ0 − ϕa(ϕ0)] [1− p(ϕ0)]− dUa
dϕa

[ϕa(ϕ0)]p(ϕ0)

= EL[ϕ0 − ϕa(ϕ0)]

(2.35)

where last identity is granted by current conservation equation (2.33). Being
ϕ0 defined such that c̃1(ϕ0) = 0, evaluating current conservation (2.33) for
ϕ = ϕ0 results in

dUa
dϕa

[ϕa(ϕ0)] = 0, (2.36)

as the first term of the equation is exactly c̃1. Equation (2.36) shows how
a ϕ0 that minimizes the total potential energy (2.32) corresponds to a ϕa
value that minimizes the array potential energy (2.27). As a consequence, it
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can be stated presence of the linear inductance in the circuit in figure 2.13
does not affect the position of the potential energy minimum. This result
is valid, in general, for any nonlinear dipole in series with a linear inductor,
regardless from the particular potential energy function implemented by the
array, that has not been explicitly expressed. Higher order coefficients can
then be expressed as follows

c̃2 =
EL
2!

[1− p(ϕ0)]

c̃3 =− EL
3!

[
dp

dϕ
(ϕ0)

]
c̃4 =− EL

4!

[
d2p

dϕ2
(ϕ0)

] (2.37)

The derivatives of p are expressed as

dp

dϕ
=− 1

EL
p3c3

d2p

dϕ2
=− 1

EL
p4

[
c4 −

3c2
3

c2

(1− p)
] (2.38)

and, finally,

c̃2 =
1

2!
pc2

c̃3 =
1

3!
p3c3

c̃4 =
1

4!
p4

[
c4 −

3c2
3

c2

(1− p)
] (2.39)

The Hamiltonian of the circuit can then be expressed as

H = ECN
2 + c̃2ϕ

2 + +c̃3ϕ
3 + c̃4ϕ

4 (2.40)

where N is the number operator that describes the charge stored in the ca-
pacitor C and ϕ is the phase operator related to the equivalent flux in the
total inductance L + La. By introducing creation and annihilation opera-
tors, respectively a† and a, the expression (2.31) can be retrieved, where
the coefficients of the Hamiltonian are now expressed in terms of expansion
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coefficients of the array potential energy Ua as

ω =
1√

C
(
L+ c−1

2

)
g3 =

p2

6

c3

c2

√
ωEC
~

g4 =
p3

12

[
c4 −

3c2
3

c2

(1− p)
]
EC
c2

.

(2.41)

From these quantities, it is now possible to obtain an expression for the detri-
mental Kerr effect that affects 3WM behavior of superconducting circuits,
we would like to suppress.

2.3.1 Kerr-free lines in a G-SPA

Kerr is a nonlinear effect that is present, in general, in any nonlinear super-
conducting circuit. It arises from the dispersion of transition energies as a
function of the level index n and is defined as

K ,
d2E(n)

dn2
(2.42)

such that the energy of an oscillator can be corrected with a quadratic per-
turbative term

E(n) ≈
(

1

2
+ n

)
~ω +

K

2
n2. (2.43)

As will be shown later, this Kerr coefficient K results in a resonance frequency
shift for the G-SPA, depending on the number of photons n that populate
the resonator. Considering the Hamiltonian (2.31), it is useful to compute
E(n) = 〈n|H |n〉 to have a first estimate of the transition frequencies as a
function of n. In fact, while the linear term a†a and the fourth order one
(a+a†)4 contribute to E(n) at first order, the third order one (a+a†)3 will
only contribute as a second order perturbation as 〈n| (a + a†)3 |n〉 = 0 ∀n.
Then, g3 can be treated as a perturbation to the Hamiltonian H. By only
considering the linear and fourth order terms of the G-SPA Hamiltonian, a
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first estimation of the transition energies E0(n) reads

E0(n) = 〈n|H |n〉 = 〈n| ~ωa†a+

g4(a†
2
a2 + a2a†

2
+

a†a2a† + aa†
2
a+

a†aa†a+ aa†aa† + . . . ) |n〉

(2.44)

where the non-conservative contributions in the expansion of the quartic
(a+ a†)4 term have been neglected. In fact, these are not relevant in a first
order estimation as their expected value on a state |n〉 will be zero. On the
contrary, each of the six terms in the expansion (2.44) will contribute to the
Kerr-term with a factor proportional to n2. In total, the fourth order term
will deliver a quantity 12g4. From second order perturbation theory, is also

possible to express the contribution of the g3 term at lowest order as −5
g23
ω

so, the total Kerr will be

K = 12g4 − 5
g2

3

ω
(2.45)

that, in conjunction with the equations (2.41), can be finally expressed as a
function of external fluxes K(ϕ+, ϕ−). From this expression it is now possible
to define Kerr-free lines (KFLs). A KFL is a curve γKFL on the (ϕ+, ϕ−) bias
fluxes plane such that K = 0 for each point of such a curve. In chapter
3, simulations of Kerr-free lines will be discussed, and their experimental
characterization is presented in chapter 4.

2.3.2 Three-wave mixing amplification

A G-SPA can be three-wave mixing enabled if flux-biased in a point where
third order nonlinearity g3 of the Hamiltonian (2.31) is non-zero. In fact, by
applying an additional, strong microwave pump tone, it is possible to excite
a three-wave mixing process that can deliver gain at the resonant frequency
ω/2π, within a certain bandwidth k [40]. Pumping at exactly twice the
resonance frequency of the G-SPA, it is possible to implement a degenerate
three-wave mixing, where two signal photons interact with a pump photon in
order to increase their number. To highlight this effect, it is useful to consider
the annihilation operator of the G-SPA Hamiltonian to be transformed as
a → a + Iαeiωpt, where the first term a corresponds to the signal mode,
while, the term Iαpe

iωpt, represents a coherent pump at frequency ωp/ ≈ 2ω
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and amplitude αp, strong enough to be considered classical in the analysis.
Thus, Hamiltonian reads

H = ~ωa†a+ gaa(a
2eiωpt − h.c.) + . . . (2.46)

where terms not responsible for gain are absorbed in the dots. Gain is en-
abled by the coefficient gaa = g3αp, so can be obtained only if g3 6= 0 and
provides a strong signature of three-wave mixing operations. The additional
terms in the Hamiltonian (2.46), despite not being directly involved into the
amplification, can harm its performance as they can lower the efficiency of
three-wave mixing process or detune the resonance frequency ω from the de-
sired value. Among these terms, the Kerr is the most important to suppress,
as it arises from a combination of the most relevant expansion coefficients
of the potential energy of a G-SPA, namely c̃2, c̃3 and c̃4. The advanced
Hamiltonian tuning capabilities of a G-SPA can be employed to suppress as
much as possible these detrimental terms, keeping the Hamiltonian (2.46) in
its simplest form for different values of the resonance frequency. This is only
possible with the additional phase-bias degree of freedom ϕ−, provided by
the Gradiometric SNAIL. An experimental demonstration of Kerr-free three-
wave mixing amplification at different operating frequencies is presented in
chapter 4.
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Chapter 3

Design and fabrication of a
GSPA

3.1 Numerical simulations

To design an operative G-SPA, it is necessary to consider some constraints
that depend on the particular application, the employed materials, but also
on the limitations of the measurement capabilities of the hardware for its
experimental characterization. First, let’s consider frequency specs. As the
chain of microwave components (detailed in the last chapter) has a finite
frequency bandwidth, the target maximum frequency fmax of the G-SPA (at
zero external bias, with no trapped flux), should be lower than the maximum
frequency of the setup. Quantitatively, it is desirable to acquire the frequency
response up to at least fmax+k, where k is the total bandwidth of the G-SPA,
in order to easily measure the whole resonance curve centered at fmax. For
the device presented in this manuscript, a maximum operating frequency of
about 9.2 GHz has been chosen. In order to hit this target frequency with
the experimental device, it is important to balance the inductive contributes
to the resonance of both the nonlinear array of G-SNAILs and the linear
resonator. In fact, the resonance frequency can be tuned by both changing
the length of the λ/2 resonator and changing parameters of the array as M ,
α and EJ. Is important to keep in mind that changing either of the two
contributions to the resonance will also modify the array participation ratio
p, defined in the expression (2.34). To fully explore the tuning capabilities
of the G-SNAILs, the maximum allowed value α = 0.15 has been chosen. In
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Figure 3.1: Numerical simulations of the resonance frequency of a G-SPA as a
function of the bias phases ϕ+ and ϕ−. The response is periodical in both phases,
and the transformation ϕ± → ϕ± + π keeps the response unchanged, as predicted
from the model.

fact, for α > 0.15, a G-SNAIL can implement a multi-well potential energy
function that can harm its tunability by trapping the phase particle in the
wrong minima and requiring to reset it to the initial state before proceeding.
At this point, as

fmax =
f0√

1 +
LJM

L0

(
1
9

+ 2α
) (3.1)

where L0 = Z0/ω0 is the inductance of the bare λ/2 resonator and Z0 = 50
Ω its intrinsic impedance, it is possible to retrieve a value for the quantity
LJM that fixes the array characteristics. As in a standard SPA M = 20
has been chosen [21, 22], thus the solution LJ is known once the bare res-
onance frequency of the resonator f0 is fixed. Once a target LJ is known,
one can design the junctions in order to have the right area given the critical
current density of the process. The experimental data presented in this the-
sis was measured from a G-SPA with a maximum frequency of about 9.25
GHz, corresponding to a value LJ ≈ 20 pH. It is then possible to numerically
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Figure 3.2: Numerical simulations of the Kerr coefficient as a function of bias
phases ϕ+ and ϕ−. Kerr shares same periodic structure as frequency response.
Kerr-free lines are traces over the Kerr plot, identifying the possible combinations
of bias fluxes that suppress the Kerr.

simulate the resonance frequency as a function of the two bias phases ϕ+

and ϕ−, by computing the shape of the potential energy function and then
expanding it around its minima. A 2-D plot of the resonance frequency can
then be produced (figure 3.1), showing what should be expected from exper-
imental mesurements, in order to validate the G-SPA model. This resonance
frequency simulation has been performed with the following parameters set:
α = 0.145, ω0/2π = 15.61 GHz, LJ = 27 pH and Z0 = 50 Ω. These values
were extracted by least-square fitting the experimental data shown in chapter
4 with the model (2.41) for ω, described in chapter 2. With an expansion of
the potential energy up to the fourth order, it is also possible to estimate the
Kerr effect with the expression (2.45) as a function of the two bias phases,
represented in figure 3.2. Regions of particular interest are those where the
Kerr is suppressed, in order to implement pure and clean 3WM operations.
While with a single flux-knob it is only possible to identify a Kerr-free point,
here, with two flux bias knobs, Kerr can be suppressed on a 1D variety,
namely a KFL. The additional flux bias degree of freedom can be employed,
for example, to change the resonance frequency of a G-SPA while preserving
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Kerr-free operation.

3.2 CAD Simulations

CAD simulations were performed in order to characterize and validate the
design. ANSYS HFSS software was employed to analyze the linear response
of the device (see figure 3.3), where the JJs have been replaced by linear
inductances with values LJ and LJ/α, for big and small junctions respec-
tively. In this way, it was possible to converge on an overall resonator length
L ≈ 2.8 mm, including the array of G-SNAILs, that ensured the correct
frequency placement of the device. This analysis also took into account the
particular geometry and the coupling to external environment because of sig-
nal, pump and flux-bias ports. Signal port interdigital coupling capacitor,
as well as the pump port gap capacitor shapes, were optimized in ANSYS
in order to implement couplings of desired strength. Losses due to the flux
lines were underestimated by HFSS, as from simulations we would have ex-
pected < −20 dB losses. In the real device, losses that can go beyond this
value have been measured. This is probably due to the surrounding electro-
magnetic environment that was not taken into account in the simulations.
In fact, the experimental sample sits in a PCB with 6 ports: 2 RF ports
for signal and pump, and 4 DC ports for the current bias of the flux lines.
These latter ones are arranged two per side, in order to provide, for each
flux line, a feed port and a return port for the bias current. The two ports
are also shunted on the PCB with 5 Ω SMD thin-film metallic resistors (see
figure 3.12), in order to provide a low resistive path in case one of the su-
perconducting flux lines switches to normal if its critical current is exceeded.
This is particularly important when implementing thin aluminum lines, as
these are pretty fragile and could easily blow-up with too much ohmic power
dissipation. The flux lines were implemented with a width of 5um and a
distance from the device of 5um, in order to provide enough flux before their
critical current was reached. This resulted in a high coupling between the
device and flux lines, providing non-negligible internal losses. To estimate a
reasonable geometry for the flux lines that would guarantee reaching a flux
quantum for both ϕ+ and ϕ− bias phases and, at the same time, not require
a too high current, magnetostatic simulations with ANSYS Maxwell software
were performed. By taking advantage of the symmetry of the device and the
linearity of the magnetic problem (neglecting Meissner effect, not significant
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Figure 3.3: HFSS simulation for the device with shorted JJs. The absolute value
of the electric field (blue is low intensity, red is high) is plotted on the substrate
surface for the λ/2 resonance mode. It can be seen that the coupling to the flux
lines is not negligible, as the electric field propagates along these. This suggests
that charge coupling should be taken into account when designing on-chip flux
lines.
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Figure 3.4: Magnetostatic simulation for the extraction of flux-bias couplings of
the G-SPA. To estimate the flux gradient along the 20 cells array, as well as direct
and cross couplings, the flux at four loops A1, A2, B1 and B2 is estimated when
the magnetic field is excited by a one flux line only.

for our purposes), simulations were performed with only one current-biased
flux line, while keeping the other unbiased with no flowing current. These
simulations provided important feedback regarding the homogeneity of the
flux along the direction of the array of G-SNAILs, a crucial feature to guar-
antee that all 20 cells are flux-threaded with the same fluxes for each loop,
thus implementing the correct potential energy function for each value of ϕ+

and ϕ−. An acceptable homogeneity was achieved by having the flux-lines
protruding on both sides of the array, in order to appear almost as infinite,
parallel lines from the flux-bias point of view. With ANSYS Maxwell soft-
ware it was also possible to estimate the flux supplied to a loop on the side of
the biased line, and compare it to the flux supplied to a loop on the opposite
side. This was important in order to understand how much tunability was
possible to achieve in terms of ϕ+ and ϕ−, when biasing with side currents i1
and i2. The “cross-flux-bias” enhances the tunability of ϕ−, while suppresses
the ϕ+ one. This wouldn’t be a problem if flux lines were supporting high
currents but, being entirely made by aluminum, and with a section of about
0.1µm × 5µm, they are limited to few mA of flowing current, if perfectly
fabricated. The simulations allowed to extract mutual inductances between
the biased flux line and four loops, chosen as in figure 3.4. With reference to
the image, the four mutual inductances were estimated as

MA1 MA2 MB1 MB2

0.81 pH 0.38 pH 0.78 pH 0.36 pH
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so the non-homogeneity of the flux along the array is acceptably ≈ 3%, while
the difference between direct and cross flux is > 50%, providing sufficient
separation between the magnetic fields generated by each bias line.

3.3 Fabrication

The fabricated samples are based on aluminum as superconducting metal
and aluminum oxide as insulator for the barrier of the tunnel Josephson
junctions, everything deposited on an intrinisic silicon substrate. In order to
implement a ground plane for the microstrip resonator, the employed wafers
were previously covered on the back with a silver metal layer. To fabricate
Josephson tunnel junctions the Dolan bridge technique has been employed,
facilitating the deposition of both JJs and metallic layers (resonator, flux
lines, capacitors etc.) with a single fabrication step.

The Dolan bridge technique [41, 42] is based on the fabrication of a re-
sist mask where “suspended resist bridges” are employed to shadow certain
regions of the substrate from the evaporation of the employed metal. This
allows to create controlled overlaps between different metal layers when it is
possible to choose their evaporation angles. In this section, the fabrication
techniques employed for the realization of a G-SPA are described.

After a intrinsic silicon wafer has been back-covered by a metallic layer,
the fabrication of the resist mask takes place. As already mentioned, the
whole fabrication relies of the Dolan bridge technique. In order to be able to
create suspended structures, it is necessary to employ two resists that have
different sensitivity to the e-beam writing operation (cite papers). In fact,
a bridge is formed by “digging” around and under a certain region of resist,
leaving just a stripe hanging from two sides. With reference to figure 3.5:
A first, “soft” resist of type MMA(8.5)MAA EL13 is spinned at 3000 rpm
for 90 s on the substrate to reach a thickness ts ≈ 800 nm, then baked for 1
minute at 175◦C. Then a second, thinner layer of “harder” resist of type 950k
PMMA A4 is spinned at 2000 rpm on top of the first one to reach a thickness
th ≈ 150 nm, and baked as well for 15 minutes at 175◦C. This completes the
spinning of the resist layers, and the wafer is ready to be “activated” by an
electron-beam lithography process.

The electron-beam lithography employs a very narrow, low current (∼
1/50 nA) and high-voltage (∼ 100 kV) electron beam that can be positioned
on a wafer with high precision, thanks to variable deflectors that orient the
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Figure 3.5: a. Cartoon of a wafer section for the fabrication of the Dolan bridge.
A soft, thick PMMA layer is spinned of the substrate, then covered by an harder
and thinner one. b. An electron-beam lithography is performed on the spinned
wafer. A 100 kV beam is delivered on the regions where both the PMMAs have
to be removed, with a high dose where both resists need to be removed and lower
dose where the suspended bridge should be positioned. After the beam impacts
the substrate, the latter backscatters electrons that activate the surrounding resist,
spreading in a circle with a radius of ≈ 6 µm. This activates only certain regions
for the development process, depending on the doses employed. c. An IPA-DI
developer is employed to dissolve the regions activated by the e-beam lithography.
d. The non-activated hard resist is suspended on top of the substrate, forming a
Dolan bridge.
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beam in two directions. The purpose of this step is to deliver electrons to
the region of resist that need to be dissolved (in this case, a positive resist),
in order to fabricate the resist mask that will effectively shape the sample in
the deposition step. Because electrons are collected by the substrate, they
travel all the way through the two resists before reaching the cathode. This
implies that, over time, the bottom resist layer can be activated before the
top one, by delivering a dose of electrons that is sufficient to activate the
former only. With this technique, it is possible to activate all the resist
except for a thin strip of hard PMMA, that will not undergo dissolution
during the development process thus forming a Dolan bridge. In order to
deliver the right dose of electrons in the right areas of the spinned wafer,
it is possible to control the beam current iB and the speed with which the
beam will sweep on a certain region. In fact, the choice of beam current and
sweep speed selects the charge-per-area-unit that the e-beam will deliver to
the wafer. Usually, big features (' 0.1 − 1 mm) are written by using high
currents (' 20/40 nA) while smaller, more sensitive features are written
with lower currents (' 2/5nA). In this way, the writing time can be kept
reasonable (' 10 mins) also for big areas to be written. After the resist is
activated by e-beam writing, the mask development is performed by diving
the activated sample in a solution of IPA-DI 70/30, kept at 6C° and for a
total time of 120s. The time, as well as the temperature, are crucial factors
in order to deliver optimal results and, in general, the doses to use for the
writing of a Dolan bridge strongly depend on these parameters.

Figure 3.6 shows a SEM picture of suspended and collapsed Dolan bridges
after the development. In order to be able to see the resist bridges, the devel-
oped sample has been metallized with gold sputtering. The picture clearly
shows how the resist, after e-beam and developement, form suspendend struc-
tures, i.e. Dolan bridges. These bridges are hanging from both sides thanks
to resist patches that were not written at all, thus not being dissolved during
development and providing sustain to the more delicate parts of the mask. If
an excessive dose is delivered in the proximity of a bridge, or the development
is performed for too long or at too high temperature, it is possible for a bridge
to collapse, detaching itself from either or both sides thus falling onto the
substrate. This makes the mask non operable for the deposition of Josephson
junctions, that could still form, but with very weird and uncontrolled shapes.
A bridge collapse usually results in a short-circuit shunting the junction. It
is also possible to have “underdeveloped” bridges (see fig 3.10), where the
dose delivered to the resist under the bridge was not high enough in order
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Figure 3.6: SEM image of gold-covered (with sputtering) Dolan bridges after
development. Suspended bridges are hanging from both sides to two non-developed
PMMA patches. If an excessive charge dose is delivered in the neighborhood of a
bridge, it can collapse and won’t be employable for the deposition of a Josephson
junction.
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Figure 3.7: SEM image of gold-covered (with sputtering) resist mask for an array
of G-SNAILs. Dolan bridges are fabricated for the deposition of both small and
big junctions.

to dissolve it completely. This unwanted effect is more subtle of the bridges
fall, being not visible before the fabrication process is complete. In general,
every time a new mask is designed, this requires a calibration of the e-beam
doses to assign to each feature. A complete mask for the G-SPA is shown in
figure 3.7, where all the bridges are correctly formed for both small junctions
(on the two sides of each G-SNAIL) and big junctions (arrayed on the center
of each G-SNAIL).

After the mask is correctly fabricated, the sample undergoes the deposi-
tion of metal and oxidation layers for imprinting the design. The technique
employed to deposit Josephson junctions with Dolan bridges is shown in fig-
ure 3.8. After an ArO2 beam, with a ratio 3:1, is employed to clean the
mask and substrate exposed surface from possible residues, a first layer of
aluminum is deposited with an angle of +45◦, in a controlled vacuum cham-
ber at a base pressure ∼ 10−9 Torr. The function of the bridge is to provide
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a shadowing of the substrate on a certain region, in order to not have any
metal deposited on it [41] . Then, after this first step, the sample is trans-
ferred in an oxidation chamber that gets filled of ArO2 molecules, with a ratio
85%/15%. The oxidation is performed for 7 minutes with a pressure ≈ 10
Torr , in order to grow aluminum oxide AlOx on top of the first layer. This
forms a thin tunnel barrier that determines the critical current density of
the fabrication process. A third step is performed, where aluminum is again
deposited, but with an opposite angle −45◦ with respect to the first metal
layer. This time, the bridge will shadow in the opposite direction, allowing
the formation of a tunnel junction in the region below it. Finally (not shown
in the figure), an additional oxidation is performed in order to controllably
grow aluminum oxide on the top of the whole sample shielding the sample
from the room environment. In fact, as the air humidity level changes with
the seasons, without this shielding oxide the same recipes could result in dif-
ferent critical current densities for fabrications performed in different times
of the year. After the sample is retrieved from the evaporator system, it is
necessary to remove all the unwanted aluminum that is sticking to the mask.
This step, namely the “liftoff”, is performed by soaking the wafer in pure N-
Methyl-2-pyrrolidone (NMP) at a controlled temperature of 75 ◦C, at least
for 90 minutes. Then, the sample is cut with a dicing machine, in order to
retrieve the correct size of the chips before mounting. If the process has been
successful, it is possible to see the junctions with a SEM. Figure 3.9 shows
the array of three JJs in the center of a G-SNAIL, correctly formed after a
successful deposition. These JJs were obtained with two bridges, each one
with nominal width of 0.5 µm, a length of 8 µm and with an edge-to-edge
distance of 2.2 µm. This resulted in three JJs, where the two on the sides of
the array have an effective area of 8µm×0.67µm, while the one in the center
has a slightly larger effective area of 8µm × 0.75µm. If the fabrication pro-
cess hasn’t been successful because of underdeveloped bridges, the junctions
would appear as in figure 3.10, with a rounded shape and cut off corners.
This happens because, instead of digging a sharp, rectangular hole below the
bridge, the development doesn’t homogeneously remove the soft resist, that
will keep sticking under the sides of the bridge, giving it the shape of an arc.
In this way, the shadow that the underdeveloped bridge will project on the
substrate will result in a rounded shape of the junctions. Notice how this
degree of underdevelopment only affects the first and last junctions in the
center of each G-SNAIL. In fact, while these two are obtained by the metal
going below the bridge, the center junction has a shape that depends on the
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Figure 3.8: Dolan bridge process for the deposition of a tunnel Josephson junc-
tion. A Dolan bridge is employed to create “shadows” for aluminum particles that
are deposited on the wafer with evaporation process. First, the bottom layer is
deposited with an angle of +45◦. Then, a thin oxide film is deposited homoge-
neously on the aluminum surface, forming AlOx. Finally, the top layer of the
junction is evaporated with an angle of −45◦, forming a Josephson junction in the
region below the Dolan bridge.

52



Figure 3.9: SEM image of 3 big JJs forming the central branch of a G-SNAIL.
With two Dolan bridges, three JJs can be formed if their geometry and mutual
distance are chose correctly. Side junctions area depends on each bridge’s area,
while center junction area depends on the distance between the bridges.
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Figure 3.10: SEM image of JJs in the center of a G-SNAIL, deposited with
underdeveloped Dolan bridges. The underdevelopment affects the bottom shape
of the bridge, that will form a rounded shadow instead of a straight rectangular
one. This results in rounded shapes for the sides JJs, while it doesn’t affect the
shape of the central junction.

upper (walkable) part of the bridge, that is easier to get correctly developed.
A SEM image (figure 3.11) of the whole G-SPA shows the placement of the
nonlinear array in the microwave resonator, as well as the side flux-lines that
are used to tune the coefficients of the implemented Hamiltonian. Each G-
SNAIL is composed by three JJs, placed in the center, and two small JJs,
shunting on each side. The finished sample is mounted in a copper box
with an embedded PCB, in order to provide the required electrical connec-
tions for signal, pump and flux-bias ports. The PCB is obtained by milling a
Rogers TMM 10 laminate, with a thickness of ≈ 0.3 mm and covered on both
sides with a 50 µm thick copper layer. The assembled sample box is shown
in picture 3.12 showing signal and pump ports, as well as flux ports where
currents are injected into the on-chip flux lines. The flux ports are shunted
by 5 Ω resistances, whose role is to provide a low-resistive flow path for bias
currents, in case one of them exceeds the critical current of the correspondent
flux line. The room temperature resistance of the flux lines was measured to
be ≈ 500 Ω each, so the 5 Ω shunts are enough lower to prevent overheating
of a flux line in case it switches to normal metal.
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Figure 3.11: SEM image of a Gradiometric SPA. The G-SNAILs array is de-
posited inside a tapered resonator, with two flux-lines on the sides. Each G-SNAIL
has three big JJs (purple) in the middle and one small JJ (blue) per side.
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Figure 3.12: Sample holder for a G-SPA. A PCB is glued to a copper holder
that hosts SMA connectors on the back (not shown). The PCB is soldered to
signal and pump ports of the holder, and has milled copper traces to deliver rf
signals and dc bias to the device, that sits in the central slot. Each flux port is
resistively shunted by 5 Ω (2 × 10 Ω metallic resistances in parallel) to provide a
low-resistance path for the bias currents in case these exceed the critical current
of the on-chip aluminum flux lines.
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Chapter 4

Experimental methods and
results

4.1 Measurement setup

As described in the previous chapters, the characterization of a G-SPA, for
both linear and non-linear behaviors, relies on measuring its frequency re-
sponse under various dc-bias, signal and pump conditions. As the flux-biases
need to be independent in order to shape the Hamiltonian with two degrees
of freedom, it is necessary to employ two independent generators to current
bias the flux lines. With reference to figure 4.1, a current bias is obtained
by having a voltage generator with series resistors on each terminal. The
DC lines are connected to the G-SPA with twisted pairs in order to reduce
magnetic noise pickup, and each line of a twisted pair is connected to the
generator with a bias-tee circuit, with the purpose of redirecting any rf sig-
nal leakage to a purely reflective load, in this case a short circuit to ground.
Despite the twisted pairs were not designed to provide good transmission
of rf signals, the amount of measured losses of the device was significantly
higher when a bias-tee was not employed to connect the room temperature
DC current sources to the DC lines inside the cryostat. The employment of
a bias-tee allowed to direct the signal leaked to the flux lines to an RF port
at room temperature, decoupling it from the DC instruments employed to
provide the flux-bias. By mounting a 50 Ω load on the rf port, higher losses
where noticed with respect to the case where a purely reflective short-load
was mounted. This suggested that the design needs to be improved in or-
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Figure 4.1: Experimental setup for the characterization of a G-SPA. The flux
biases are provided by two independent voltage generators with series resistances
R, implementing an effective current bias. A VNA is employed to measure the
reflection coefficient of the DUT, and an RF pump is delivered with a CW gener-
ator.
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der to suppress the sensitivity to the electrical environment connected to the
flux lines. Regarding the rf side, the G-SPA reflection response was probed
through a VNA operated in transmission. All the rf-lines are connected to
the instruments with dc-blocks, allowing to galvanically separate cryostat
ground from the rest of the setup. This is particularly useful in order to
have a control of how the grounds are connected and, in general, to avoid
wild ground loops that can harm the noise properties of the measurements.
By using a circulator, it was possible to physically separate incident and re-
flected microwave signals on the Device Under Test (DUT), in order to have
a different setup for input and output lines. In fact, it is necessary to employ
a chain of cold attenuators on the input lines, in order to obtain a reason-
able signal-to-noise ratio. In this way it is possible to reach the required low
power at G-SPA signal port by starting with an high power at room tem-
perature. This allows to inject an high SNR signal in the input line, that is
then attenuated by cryogenic attenuators. These ones, being at low temper-
atures, add a much lower amount of thermal noise ∝ kBT with respect to an
attenuator placed at room temperature. Input line is then low-pass filtered
with a cutoff at 12 GHz for noise performance purposes. On the output
line, an additional low pass filter is put in order to cut pump modes that
usually are applied at twice the resonance frequency of the device. Then, a
chain of two rf isolators are put after the LPF in order to shield the device
from a cold HEMT amplifier sitting on the 4K plate. This latter is employed
as a first, low noise preamplification stage in order to raise the signal level
above enough the VNA receiver noise floor. Then, output signal is further
amplified at room temperature and finally reaches the VNA receiver. Last,
an RF pump can be applied to the G-SPA, for example, to excite three-wave
mixing operations. The pump is generated with an rf CW generator, and is
attenuated at cold stages of about -30 dB. The less attenuation of the pump
with respect to the signal comes mainly from two reasons: first, the pump
needs to be strong enough in order to excite the desired nonlinearities in the
G-SPA and, secondly, the pump port is very weakly coupled in order to avoid
significant signal leakage out of it.

4.2 Experimental data

In this section, experimental data will be discussed, showing the advanced
Hamiltonian tuning capabilities of the G-SPA. The possibility of keeping Kerr
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suppressed at different operating frequencies and, at the same time, excit-
ing 3WM operations will be presented. First, linear response measurements
at low signal power will be shown in order to characterize the resonance fre-
quency as a function of both ϕ+ and ϕ− bias phases. This provides important
information about the flux tunability, frequency operating range, internal and
coupling losses of the device. A comparison with numerical simulations will
be made in order to validate the design experimental parameters. Then, the
nonlinear response of the G-SPA will be acquired by measuring the reso-
nance frequency as a function of the bias phases, while at the same time,
sweeping the input signal power in order to show the Stark shift of the res-
onance frequency. This allows to individuate a 1-D region where the Kerr is
suppressed, namely a Kerr-free line, along which the operating frequency of
the G-SPA can be chosen. It will also be shown that it is possible to obtain
20 dB amplification by applying a pump at twice the resonance frequency
on Kerr-free points, demonstrating that the device can implement Kerr-free
three-wave mixing operations for different linear responses.

4.2.1 Resonance frequency

To characterize the linear response of the device, the complex reflection coef-
ficient at signal port S11(ω) of the G-SPA is measured as a function of ϕ+ and
ϕ−. For a given combination of dc-flux biases, the resulting S11 curve is fit-
ted to the model of a damped resonator capacitively coupled to a microwave
generator. The fit is performed with the “resonator tool fit” program [43],
that has the capability of algebraically fitting the complex function S11(ω)
without the need of iterative processes that can have convergence issues when
data is noisy and the initial guesses of parameters aren’t in the vicinity of the
experimental ones. The phase of reflected wave at G-SPA signal port is shown
in figure 4.2 as a function of probe tone frequency ω/2π, common-mode bias
flux ϕ+ and for a fixed value of differential flux-bias ϕ−/2π = 0.63. A fit of
the resonance frequency, performed through the above mentioned code for
each value of ϕ+, is superimposed on the measured data with white markers,
to have a direct visual comparison of the two. Overall, the fit data is in
very good agreement with the measured data. In order to have a complete
visualization of the resonance frequency landscape as a function of both bias
fluxes, the fit procedure is replicated also for each value of ϕ−. This turns
to be an experimental characterization of the function ω(ϕ+, ϕ−), character-
izing the linear part of G-SPA Hamiltonian (2.31). The measured resonance
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Figure 4.2: Measured phase of reflection coefficient S11 of the experimental device
as a function of frequency ω/2π and bias flux ϕ+, for a fixed value of ϕ−/2π = 0.63.
For each value of ϕ+, the resonance is extracted by a fit procedure that returns
the value of resonance frequency (white markers).
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Figure 4.3: Measured resonance frequency. The white regions represent flux
points where the resonance was outside the acquisition range of the microwave
setup. A whole period in both ϕ− and ϕ+ fluxes is represented.

frequency can then be plotted as a function of the two bias fluxes, as in figure
4.3, where horizontal and vertical axes are, respectively, bias phases ϕ+ and
ϕ−, with the color representing the value of resonance frequency. In this plot,
both bias phases show a whole flux quantum tunability, and the resonance
frequency appears to satisfy the relation ω(ϕ+ ± nπ, ϕ− ± nπ) = ω(ϕ+, ϕ−),
as expected from the model presented in chapter 2. Data from this figure can
then be compared to simulated resonance frequency, in order to obtain an
estimate of the design parameters of the experimental device. By selecting a
large enough portion of the experimental data where there are no holes be-
cause of missing points, a nonlinear least-square fit algorithm is employed in
order to extract best fit values for the geometrical parameters of the G-SPA.
Figure 4.4 shows a comparison between measured resonance frequency and
simulated one. The simulation is performed with the following set of best-fit
parameters

α Lj Z0 ω0/2π
0.145 27 pH 50 Ω 15.6 GHz

where Z0 has been pre-selected to 50 Ω and all the other ones were kept free
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Figure 4.4: Comparison between experimental data and simulated data for the
resonance frequency of a G-SPA. Simulated data is obtained with a set of design
parameters extracted with a least-square fit to measured data. Experimental and
simulated resonance frequency curves are compared for two values of differential
bias phase ϕ−, showing quantitative agreement.
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to vary in an acceptable range around the expected design values.

4.2.2 Kerr-free lines

As explained in the second chapter, the nonlinear response of a G-SPA is
produced by the coefficients g3 and g4 of the Hamiltonian (2.31). While the
three-wave mixing operation only depends on third order nonlinearity g3, the
detrimental Kerr effect is a function of all the expansion coefficients of the
Hamiltonian. In order to characterize the Kerr, it is possible to measure
the resonance frequency Stark shift as a function of the population of the
resonator. In fact, the Stark shift detuning ∆ is directly related to the Kerr,
when evaluated for a not-too-crowded resonator, being ∆ = Kn̄. For the
following analysis, it is useful to introduce the coefficient R(ϕ+, ϕ−) = n̄/Pin

that relates the number of photons in the resonator with the input power at
signal port. The functional form of R is well known from linear resonators
theory

R =
4kc

2π~ω (kc + ki)
2 (4.1)

and it is an always-positive function that depends on resonance frequency,
internal and coupling bandwidths ki and kc. Then, Stark shift can be directly
related to input signal power as

∆ = RKPin = B(ϕ+, ϕ−)Pin. (4.2)

The B coefficient, then, carries the signature of the Kerr, as sign(B) =
sign(K) and B = 0 ↔ K = 0, being R > 0 ∀ (ϕ+, ϕ−). Notice that,
from an experimental point of view, points where B ≈ 0 because the R
coefficient is very small (possible if strong internal losses are present), can
still be distinguished from Kerr-free points where K ≈ 0. In fact, while R
cannot change sign, Kerr coefficient will become zero in correspondence of a
change of sign, that will reflect in a change of sign of B. A first experimental
characterization of resonance frequency Stark shift is shown in figure 4.5,
where, for a fixed value of differential phase bias ϕ− = 0.33, corresponding
to a value of αeff = 0.139, a signal power sweep is performed for three different
values of ϕ+. The phase of S11 coefficient is presented in order to identify
the position of the resonance. In the first plot, for ϕ+ = −0.13, a negative
detuning can be seen, as the resonance frequency decreases while increasing
the pump power. On the other hand, for ϕ+ = 0.04, a positive Stark shift is
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Figure 4.5: Measured ∠S11 for fixed values of ϕ+ and ϕ−, as a function of input
signal power Pin. With a fixed value of ϕ−/2π = 0.33, for different values of ϕ+

it is possible to have negative Stark shifts (fig.a), positive Stark shifts (fig.b) or
strongly suppressed Stark shifts (fig. c). Flux points in fig.c identify a Kerr-free
point, where the resonance frequency of the G-SPA does not depend, at least for
low powers, on the photons occupation of the cavity. Notice how a Kerr-free point
corresponds to a fixed value of resonance frequency.
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Figure 4.6: Kerr extracted from simulations in comparison with experimentally
measuered B. The model employed correctly guesses the region of fluxes where
Kerr-free points are present. A qualitative prediction can be made by the model.

obtained. These two plots refer, respectively, to negative and positive values
of B, i.e. negative and positive values of K. In the third plot, for ϕ+ =
−0.09, the Stark shift is strongly suppressed, as the resonance frequency
is almost independent of the signal input power: this behavior identifies a
Kerr-free point, where K ≈ 0. The resonance frequency value is extracted
with the previously mentioned fit tool for resonators, and it is in pretty good
agreement with the experimental data. With the experimental sampling
of the Stark shift frequency detuning in figure 4.5, it is now possible to
experimentally evaluate the B coefficient. This is done with a least square fit
of a first order polynomial to the resonance frequency data extracted while
sweeping bias phases ϕ+ and ϕ−, as well as signal input power Pin. The
angular coefficient of this polynomial is then identified as B. In figure 4.6,
the experimentally measured B coefficient is compared to simulated Kerr K
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in a region where the Stark shift is significantly present. The two quantities
are normalized to their respective maximum values in the bias phases region
of interest, Bmax = 64 Mhz

pW
and Kmax = 2 × 10−3EC/~ respectively. The

two plots show a good qualitative agreement, and it is possible to identify
corresponding regions where the detuning is positive or negative, with the
same trend in both theory Kerr K and experimental B. The main difference
between the extracted B and the simulated Kerr is in the bottom inner
region of the plots. A better insight in this is provided by a plotting the
absolute values of the two quantities, in order to easily identify the Kerr-free
lines. The absolute values plots of figure 4.6 are represented in figure 4.7,
where KFLs appear as dark blue regions. Comparing the simulated KFLs
with the measured ones, it is possible to see a difference in shape in the
same region of bias phases. Despite the difference in shape, theory correctly
predicts the region of fluxes where the KFLs appear in the experimental
device, confirming a qualitative agreement between theory and experiment.
The main difference between the two plots is in the lower half region of the
ϕ− axis, where experimental lines appear more spread than what is predicted
by theory. For high values of ϕ−, instead, the position of the lines is more
consistent between the two plots. Possible explanations for this discrepancy
can come from different considerations. To exclude fitting artifact, in figure
4.8, Stark shift measured data is plotted for three different values of ϕ+,
while keeping ϕ−/2π = 0.27 (αeff = 0.036), in order to cross the distorted
KFL from side to side. From these plots, it is possible to identify a change
of sign of the detuning as one moves from point a to point c. This trend
identifies the presence of a Kerr-free point, in correspondence of the crossing
of the distorted KFL. The exclusion of fitting artifacts can move the question
about the origin of the mismatch between theory and experiment to the
device and/or the theory model. The numerical simulations of the Kerr were
performed through a model introduced in [21], where the Kerr is corrected
by a second order perturbation theory contribute from g3, as explained in
chapter 2. This correction allowed to quantitatively predict the position of
Kerr-free points in standard SPAs, also for different values of α. Because the
G-SPA effectively behaves as a SPA with a tunable α via the differential bias
flux ϕ−, it should be possible, with the same model for and SPA, to predict
its Kerr-free points quantitatively as a function of both bias fluxes ϕ+ and
ϕ−. The main discrepancy between the theory predicted Kerr-free lines and
measured ones is more evident as the value of αeff approaches zero. This
region corresponds to a strong effect of the additional bias term ϕ− in the
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Figure 4.7: Absolute values of simulated Kerr and experimentally extracted
B coefficient. The dark blue regions identify Kerr-free lines. With respect to the
simulated Kerr, the experimentally evaluated Kerr-free lines appear distorted. The
region of bias fluxes where the experimental KFLs are present is in agreement with
what predicted by theory.
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Figure 4.8: Stark shift measurements for three different values of ϕ+, selected in
order to evaluate the validity of the distorted Kerr-free lines. Plot a and plot c,
selected on the left and on the right of the distorted Kerr-free line, show, respec-
tively, negative and positive Stark shifts. The b point, in the most vicinity of the
KFL, shows suppressed Kerr. Fit resonance frequency reflects correctly the sign
of the detuning, also when an offset is present as in figure c.
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cancellation of the nonlinear contributions from the two small JJs on the sides
of each of the G-SNAILs forming the array. It is reasonable to expect that
inhomogeneities in the array that can arise from fabrication imperfections
can affect the behavior of higher order effects, as Kerr. Imperfections can
be present inside each G-SNAIL where, for example, the three big junctions
in the center, supposed identical, can result different because of fabrication
uncertainties, changing the effective shape of the potential energy function
of each elementary cell. As the deviation from what predicted by theory
is clearly noticeable when ϕ−/2π < 0.3, corresponding to αeff < 0.1, it
is possible that some asymmetries between the two small junctions in the
array are causing the discrepancy between experiments and simulations. In
fact, the cancellation of αeff requires the small side junctions of each G-
SNAIL to be perfectly identical. Moreover, it is difficult to ensure perfectly
developed bridges all along the structure while writing the mask with the
e-beam, as proximity effect is more present in the center of the array than
on its sides. This can produce lower Ic than expected for the junctions at
the sides of the array, changing the contribution of the corresponding cells
in the overall potential energy (2.27). A numerical analysis, based on the
model presented and taking into account these types of imperfections of the
G-SPA, is in progress in order to understand if they can give rise to distorted
Kerr-free lines. Also, to exclude that the distortion is not predicted by a more
sophisticated theory, full quantum simulations with QuTiP software [44] are
in progress, where the energy spectrum E(n) of the G-SPA can be directly
computed from a full Hamiltonian, expressed up to a desired order, and Kerr
computed as from definition, d2E/dn2. These two analyses should contribute
to advances in the understanding of the design and fabrication accuracy
required in order to produce devices that quantitatively agree with their
theoretical model. It will also be possible to have an hint on if purpose-
designed asymmetries can actually give beneficial effects on the nonlinear
behaviors of these superconducting circuits. These could be designed, for
instance, to shape Kerr-free lines in such a way to enhance the frequency
tunability along them.
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4.2.3 Kerr-free three wave mixing and frequency tun-
ability

The presence of Kerr-free lines has a strong impact on the types of Hamil-
tonians that a G-SPA can implement. In fact, by selecting phase biases
points that belong to these sweet spots, it is possible to tune some other pa-
rameters as, for instance, the device operating frequency, while still keeping
Kerr-free operation mode. Moreover, the three-wave mixing coefficient g3 is
usually non-zero on Kerr-free points, meaning that it is in principle possible
to operate a G-SPA as a Kerr-free parametric amplifier at different resonance
frequencies. In order to demonstrate these advanced tuning capabilities of a
G-SPA, gain curves have been experimentally measured on Kerr-free points
that correspond to different operating frequencies, as shown in figure 4.9.
This figure shows experimental data of Stark-shifted resonance frequency for
two values of ϕ−, while sweeping ϕ+ and input signal power Pin. On the
top-left panel, for ϕ− = 0.33, resonance frequency curves are plotted as a
function of ϕ+, on the horizontal axis, while the color of each curve repre-
sents the corresponding value of input signal power Pin. Notice that there
are points where the curves intersect each other meaning that, in their corre-
spondence, the resonance frequency does not change with the applied input
signal power. These points are Kerr-free points, as also evident from the plot
of B in the center-left panel, that crosses zero in their correspondence. To
demonstrate that three-wave mixing is possible in these sweet-spots, a gain
curve is acquired in a Kerr-free point, by applying a pump tone at a frequency
ωp = 2ω, in order to excite a degenerate parametric gain. The bottom-left
panel shows that is in fact possible to obtain a 20 dB gain at the ω/2π = 6.76
GHz, corresponding to the frequency of the Kerr-free point for ϕ− = 0.33, i.e.
αeff = 0.139. This behavior is already well known in parametric amplifiers
based on standard SNAILs [21,22], but these are also limited to present such
a feature for a single value of resonance frequency only. A G-SPA, instead,
can make good use of the additional phase bias knob ϕ−, whose choice can
change the position of a Kerr-free point, along a Kerr-free line, making it
correspond to a different value of operating frequency ω. In fact, the right
panels of figure 4.9 show the same feature of Kerr-free three-wave mixing
amplification, but for a different value of differential bias phase ϕ− = 0.38,
corresponding to a value of = 0.21. This time, the Kerr-free point appears
for a resonance frequency of ω/2π = 5.87 GHz, about 1 GHz away from the
Kerr-free resonance for ϕ− = 0.33. Moreover, this Kerr-free point can be
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Figure 4.9: Stark shift measurements. The resonance frequency is acquired as a
function of bias phases ϕ+ and ϕ−, while sweeping input signal power Pin. The
B coefficient is directly proportional to Kerr and, when zero, identifies a Kerr-free
point. Plots for different values of ϕ− show that is possible to change the position
of a Kerr-free point in order to make it correspond to different values of resonance
frequency.

72



pumped in order to produce a 20 dB gain curve, again with ωp = 2ω. This
last figure demonstrates the advanced Hamiltonian-tuning capability that is
achievable with a G-SPA. In fact, it proves that two flux-bias knobs can pro-
vide enough flexibility to eliminate an unwanted nonlinear effect as the Kerr
and, at the same, can freely tune one of the other Hamiltonian parameters
to the desired working point. The cancellation of the Kerr requires a precise
balance of nonlinear expansion coefficients of the G-SPA c2, c3 and c4, as
explained in the second chapter, while the resonance frequency only depends
on c2. Then, the Kerr cancellation for different values of resonance frequency,
i.e. different values of c2, is a process that requires the zeroing of a complex
function of the G-SPA expansion coefficients such that, for any value of c2,
c3 and c4 are correctly weighted resulting in K = 0. This behavior is very
desirable when precise, Kerr-free amplification is required for the readout of
a superconducting qubit, with the additional feature of being able to oper-
ate selectively at different frequencies. In fact, with a single G-SPA, many
detuned qubits, operating at different frequencies, can be read while keeping
the device tuned to a sweet-spot where the Kerr nonlinearity is suppressed.
This peculiarity of the G-SPA arises from the two tuning degrees of freedom
of the potential energy function implemented by the G-SNAILs, providing
advanced tuning capabilities of the Hamiltonian of the circuit in which are
embedded. More in general, G-SNAILs can benefit many applications that
are nowadays constrained by the presence of parasitic effects arising from
residual nonlinearities in the Hamiltonians of the employed devices.
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Chapter 5

Perspectives and conclusion

5.1 Perspectives

5.1.1 Facilitate parametric interactions between super-
conducting cavities

Superconducting 3D cavities are lead actors in bosonic quantum information
processing, where the two level systems employed as qubits are isolated from
linear, very high Q superconducting cavities entirely made of aluminum. A
nonlinear element as a transmon is usually coupled to these cavities in order
to make them readable, providing the required anharmonicity that allow to
discriminate between the two states. In many applications, two or more
cavities are employed with different roles [12, 19, 29] and their interaction is
mediated by on-demand activated parametric processes. When the involved
process is 3WM, as described in the first chapter, it could be important to
suppress the Kerr to have very high fidelity in converting photons from a
cavity to another. In this frame, the device presented in this manuscript
could be of great help, facilitating the synthesis of precise Hamiltonians that
implement pure, tunable parametric processes to mediate coherent energy
exchange between multiple cavities in a quantum processor.
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5.1.2 Implementations with ferromagnetic Josephson
junctions

Recently, unconventional Josephson junctions where a thin, ferromagnetic
layer is deposited as a part of the tunnel barrier, have been experimentally
demonstrated as capable of macroscopic quantum tunneling, when operated
below a certain temperature. From a fundamental physics perspective, this
result is quite remarkable as ferromagnetism and superconductivity are two
aspect that were supposed incompatible in the beginning. Instead, if the fer-
romagnetic layer is fabricated with thickness smaller than the London pen-
etration depth of the superconductors that form the metal leads of the JJ,
the Cooper pairs are capable of tunneling through it without breaking, thus
preserving the superconducting transport properties of standard Josephson
junctions. This suggests that these junctions can be employed in supercon-
ducting quantum circuits, where their peculiar nonlinear behaviors can be of
interest for designing new types of tunable interactions. In fact, the presence
of a ferromagnetic layer inside the junction can behave as a magnetic mem-
ory that directly reflects in the critical current value of the device [45–48].
Such a behavior can be practical in many applications where, instead of a
continuous, analog tuning of the microwave response of the junctions in a su-
perconducting device, it is more suited to have just two possible behaviors.
This “digital” control of ferroMagnetic Josephson Junctions (MJJs) critical
currents is directly related to the hysteresis of the M(H) magnetization func-
tion of the particular employed ferromagnet, and the switch between the two
selected stable states is easily obtained by applying single magnetic pulses
to the device. An MJJ would then implement a potential energy term of the
form

UMJJ = EMJJ(Φ⊥) cosϕ (5.1)

where EMJJ(Φ⊥) is the MJJ Josephson energy that can be tuned with a
magnetic flux Φ⊥ orthogonal to the current flow direction. This type of junc-
tion can have an hysteretical behavior in Φ⊥, depending on the ferromagnet
present in the barrier. An interesting application could be to implement a
SNAIL with an MJJ junction shunted by an array of 3 traditional SIS JJs,
such that all their Josephson energies can be tuned with an orthogonal flux.
The presence of an MJJ in the loop could heavily distinguish the tunability
in Φ⊥ of the MJJ from the one of the SIS JJs, in order to have a desired
behavior. Moreover, while an SIS junction with no orthogonal flux will have
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the maximum critical current, an MJJ will have a critical current lower than
the maximum as a consequence of the possible residual magnetization of the
embedded ferromagnet.

MJJs are also capable of implementing π junctions [49, 50], where the
typical i(ϕ) of a standard Josephson junction is phase-shifted as it appears
as iπ(ϕ) = Ic sin(ϕ− π). Moreover, these unconventional junctions can im-
plement current-phase responses that have also additional terms with re-
spect to the standard sinϕ one, where higher harmonics are present that
change the usual shape of tunnel Josephson junctions potential energy func-
tion. In particular, the presence of a second harmonic in the i(ϕ) relation of
Superconductor-Ferromagnet-Superconductor junctions has been experimen-
tally demonstrated [51] and can provide additional freedom in the accurate
and flexible synthesis of parametric processes, with proper design choices.
Based on these recent advances, it would be of particular interest to under-
stand the novel features that a superconducting device based on JJs and
various types of MJJs can deliver into the superconducting quantum infor-
mation processing field.

5.2 Conclusion

This manuscript presented the first experimental proof-of-principle of the
advantages that a double-flux-biased superconducting circuit can provide in
terms of tuning of its Hamiltonian parameters. With two bias degrees of free-
dom, it was possible to implement Kerr-free, 20 dB parametric amplification
for different values of resonance frequency, that can be chosen over a contin-
uum with a span of more than 1 GHz. Such a result opens to many possible
applications, and makes the G-SNAIL a very promising hardware component
for implementing precise control circuitry for the weak coherent microwave
signals employed in superconducting quantum information processing.

The measured data shown in chapter 4 demonstrated that the concept
of Kerr-free lines has an experimental counterpart. The measured KFLs are
distorted with respect to the theory predictions, but the region of bias fluxes
where they appear is correctly predicted by the model. This discrepancy is
currently under investigation from both theory and experimental sides, in
order to understand its origin. More sophisticated numerical simulations are
being performed, where the Kerr is directly extracted from a full quantum
analysis with QuTiP software [44]. Moreover, an optimized G-SPA device
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is currently in fabrication in an industrial-grade facility, where the flux lines
have been engineered in order to not provide internal losses, and the design
as well will have a very high level of homogeneity of the elementary G-SNAIL
cells. Aside from the application for Kerr-free three-wave mixing at differ-
ent frequencies, the G-SPA would be practical whenever a contemporaneous
tuning of two Hamiltonian parameters is desired. This enhanced tuning can
be beneficial for both flexibility and to have an advanced, precision control
for design-critical applications where is not feasible to hit the required value
of a parameter, for example the α of a SNAIL, at the design level. In fact, a
G-SNAIL, implements a tunable αeff = 2α cosϕ− that can be controlled with
a precision that is only limited by the accuracy of the DC sources employed
to provide the bias fluxes.

An immediate application of the G-SPA would be the capability to read-
out multiple qubits, operating at different frequencies, with Kerr-free 3WM.
Kerr-free operation allows to amplify high power microwave signals without
distortion, enabling to probe a resonator that host the qubits with multiple
photons in order to enhance readout speed and fidelity. The G-SNAIL is also
a very good candidate to implement a 3WM TWPA with high performances.
In fact, thanks to the capability of tuning the linear response while changing
the efficiency of higher order processes, this device can be fine-tuned to pro-
vide the correct characteristic impedance to a TWPA and, at the same time,
tune 3 and 4 photons processes in order to produce large bandwidth gain
profiles. The gain of a 3WM TWPA, in fact, is highly sensitive to 4 photons
processes, that are capable of “breaking” the phase locking required between
signal, idler and pump tones in order to produce 20dB gain on a bandwidth
of many GHz [14]. The G-SNAIL can also be employed to drive fine-tuned
parametric interactions between two superconducting cavities, where the two
bias degrees of freedom can be used to implement tailor-made Hamiltonians
not containing unwanted terms that can harm the efficiency of a desired oper-
ation. In fact, if a beam-splitter interaction between two cavities is mediated
by a circuit implementing a 3WM process, the presence of a residual Kerr in
its Hamiltonian can be harmful for the effectiveness of the operation.

In general, G-SNAILs can provide many benefits to any GHz operation
with superconducting circuits, in particular when a device is required to
implement an Hamiltonian that is as close as possible to an ideal one. In ap-
plications where only one interaction is predominant and the residual effects
need to be suppressed as much as possible, a G-SNAIL would be a per-
fect choice. With just a little added technological complexity with respect
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to a SNAIL, in order to provide two on-chip flux biases, the Gradiometric-
SNAIL can be easily integrated in all the superconducting devices powered
by SNAILs, increasing their tuning capabilities and broadening their range
of applications.
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