71 research outputs found

    Hubble Space Telescope Combined Strong and Weak Lensing Analysis of the CLASH Sample: Mass and Magnification Models and Systematic Uncertainties

    Get PDF
    We present results from a comprehensive lensing analysis in HST data, of the complete CLASH cluster sample. We identify new multiple-images previously undiscovered allowing improved or first constraints on the cluster inner mass distributions and profiles. We combine these strong-lensing constraints with weak-lensing shape measurements within the HST FOV to jointly constrain the mass distributions. The analysis is performed in two different common parameterizations (one adopts light-traces-mass for both galaxies and dark matter while the other adopts an analytical, elliptical NFW form for the dark matter), to provide a better assessment of the underlying systematics - which is most important for deep, cluster-lensing surveys, especially when studying magnified high-redshift objects. We find that the typical (median), relative systematic differences throughout the central FOV are 40%\sim40\% in the (dimensionless) mass density, κ\kappa, and 20%\sim20\% in the magnification, μ\mu. We show maps of these differences for each cluster, as well as the mass distributions, critical curves, and 2D integrated mass profiles. For the Einstein radii (zs=2z_{s}=2) we find that all typically agree within 10%10\% between the two models, and Einstein masses agree, typically, within 15%\sim15\%. At larger radii, the total projected, 2D integrated mass profiles of the two models, within r\sim2\arcmin, differ by 30%\sim30\%. Stacking the surface-density profiles of the sample from the two methods together, we obtain an average slope of dlog(Σ)/dlog(r)0.64±0.1d\log (\Sigma)/d\log(r)\sim-0.64\pm0.1, in the radial range [5,350] kpc. Lastly, we also characterize the behavior of the average magnification, surface density, and shear differences between the two models, as a function of both the radius from the center, and the best-fit values of these quantities.Comment: 35 pages (20 main text pages, plus 15 pages for additional figures and tables); 2 Tables, 17 Figures. V3: accepted version; some minor corrections and additions made. V4: corrected several entries in Table 2. All mass models and magnification maps are made publicly available for the communit

    The Different Physical Mechanisms that Drive the Star-Formation Histories of Giant and Dwarf Galaxies

    Full text link
    We present an analysis of star-formation and nuclear activity in galaxies as a function of both luminosity and environment in the SDSS DR4 dataset. Using a sample of 27753 galaxies at 0.00590% complete to Mr=-18.0 we find that the EW(Ha) distribution is strongly bimodal, allowing galaxies to be robustly separated into passive and star-forming populations about a value EW(Ha)=2A. In high-density regions ~70% of galaxies are passive independent of luminosity. In the rarefied field however, the fraction of passively-evolving galaxies is a strong function of luminosity, dropping from ~50% for Mr<-21 to zero by Mr~-18. Indeed for the lowest luminosity range covered (-18<Mr<-16) none of the ~600 galaxies in the lowest density quartile are passive. The few passively-evolving dwarf galaxies in field regions appear as satellites to bright (~L*) galaxies. The fraction of galaxies with optical AGN signatures decreases steadily from ~50% at Mr~-21 to ~0% by Mr~-18 closely mirroring the luminosity-dependence of the passive galaxy fraction in low-density environments. This result reflects the increasing importance of AGN feedback with galaxy mass for their evolution, such that the star-formation histories of massive galaxies are primarily determined by their past merger history. In contrast, the complete absence of passively-evolving dwarf galaxies more than ~2 virial radii from the nearest massive halo (i.e. cluster, group or massive galaxy) indicates that internal processes, such as merging, AGN feedback or gas consumption through star-formation, are not responsible for terminating star-formation in dwarf galaxies. Instead the evolution of dwarf galaxies is primarily driven by the mass of their host halo, probably through the combined effects of tidal forces and ram-pressure stripping.Comment: 29 pages, 11 figures. Accepted for publication in MNRA

    Distinct patterns of brain atrophy in Genetic Frontotemporal Dementia Initiative (GENFI) cohort revealed by visual rating scales.

    Get PDF
    BACKGROUND: In patients with frontotemporal dementia, it has been shown that brain atrophy occurs earliest in the anterior cingulate, insula and frontal lobes. We used visual rating scales to investigate whether identifying atrophy in these areas may be helpful in distinguishing symptomatic patients carrying different causal mutations in the microtubule-associated protein tau (MAPT), progranulin (GRN) and chromosome 9 open reading frame (C9ORF72) genes. We also analysed asymptomatic carriers to see whether it was possible to visually identify brain atrophy before the appearance of symptoms. METHODS: Magnetic resonance imaging of 343 subjects (63 symptomatic mutation carriers, 132 presymptomatic mutation carriers and 148 control subjects) from the Genetic Frontotemporal Dementia Initiative study were analysed by two trained raters using a protocol of six visual rating scales that identified atrophy in key regions of the brain (orbitofrontal, anterior cingulate, frontoinsula, anterior and medial temporal lobes and posterior cortical areas). RESULTS: Intra- and interrater agreement were greater than 0.73 for all the scales. Voxel-based morphometric analysis demonstrated a strong correlation between the visual rating scale scores and grey matter atrophy in the same region for each of the scales. Typical patterns of atrophy were identified: symmetric anterior and medial temporal lobe involvement for MAPT, asymmetric frontal and parietal loss for GRN, and a more widespread pattern for C9ORF72. Presymptomatic MAPT carriers showed greater atrophy in the medial temporal region than control subjects, but the visual rating scales could not identify presymptomatic atrophy in GRN or C9ORF72 carriers. CONCLUSIONS: These simple-to-use and reproducible scales may be useful tools in the clinical setting for the discrimination of different mutations of frontotemporal dementia, and they may even help to identify atrophy prior to onset in those with MAPT mutations

    Early Results from GLASS-JWST. XIX: A High Density of Bright Galaxies at z10z\approx10 in the Abell 2744 Region

    Full text link
    We report the detection of a high density of redshift z10z\approx 10 galaxies behind the foreground cluster Abell 2744, selected from imaging data obtained recently with NIRCam onboard {\it JWST} by three programs -- GLASS-JWST, UNCOVER, and DDT\#2756. To ensure robust estimates of the lensing magnification μ\mu, we use an improved version of our model that exploits the first epoch of NIRCam images and newly obtained MUSE spectra, and avoids regions with μ>5\mu>5 where the uncertainty may be higher. We detect seven bright z10z\approx 10 galaxies with demagnified rest-frame 22MUV19-22 \lesssim M_{\rm UV}\lesssim -19 mag, over an area of 37\sim37 sq. arcmin. Taking into account photometric incompleteness and the effects of lensing on luminosity and cosmological volume, we find that the density of z10z\approx 10 galaxies in the field is about 10×10\times (3×3\times) larger than the average at MUV21 (20)M_{UV}\approx -21~ (-20) mag reported so far. The density is even higher when considering only the GLASS-JWST data, which are the deepest and the least affected by magnification and incompleteness. The GLASS-JWST field contains 5 out of 7 galaxies, distributed along an apparent filamentary structure of 2 Mpc in projected length, and includes a close pair of candidates with MUV<20M_{\rm UV}< -20 mag having a projected separation of only 16 kpc. These findings suggest the presence of a z10z\approx 10 overdensity in the field. In addition to providing excellent targets for efficient spectroscopic follow-up observations, our study confirms the high density of bright galaxies observed in early {\it JWST} observations, but calls for multiple surveys along independent lines of sight to achieve an unbiased estimate of their average density and a first estimate of their clustering.Comment: Accepted for publication in ApJL, 13 pages, 4 figure

    Photon shot-noise limited transient absorption soft X-ray spectroscopy at the European XFEL

    Get PDF
    Femtosecond transient soft X-ray Absorption Spectroscopy (XAS) is a very promising technique that can be employed at X-ray Free Electron Lasers (FELs) to investigate out-of-equilibrium dynamics for material and energy research. Here we present a dedicated setup for soft X-rays available at the Spectroscopy & Coherent Scattering (SCS) instrument at the European X-ray Free Electron Laser (EuXFEL). It consists of a beam-splitting off-axis zone plate (BOZ) used in transmission to create three copies of the incoming beam, which are used to measure the transmitted intensity through the excited and unexcited sample, as well as to monitor the incoming intensity. Since these three intensity signals are detected shot-by-shot and simultaneously, this setup allows normalized shot-by-shot analysis of the transmission. For photon detection, the DSSC imaging detector, which is capable of recording up to 800 images at 4.5 MHz frame rate during the FEL burst, is employed and allows approaching the photon shot-noise limit. We review the setup and its capabilities, as well as the online and offline analysis tools provided to users.Comment: 11 figure

    The wide-field, multiplexed, spectroscopic facility WEAVE : survey design, overview, and simulated implementation

    Get PDF
    Funding for the WEAVE facility has been provided by UKRI STFC, the University of Oxford, NOVA, NWO, Instituto de Astrofísica de Canarias (IAC), the Isaac Newton Group partners (STFC, NWO, and Spain, led by the IAC), INAF, CNRS-INSU, the Observatoire de Paris, Région Île-de-France, CONCYT through INAOE, Konkoly Observatory (CSFK), Max-Planck-Institut für Astronomie (MPIA Heidelberg), Lund University, the Leibniz Institute for Astrophysics Potsdam (AIP), the Swedish Research Council, the European Commission, and the University of Pennsylvania.WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366-959 nm at R ∼ 5000, or two shorter ranges at R ∼ 20,000. After summarising the design and implementation of WEAVE and its data systems, we present the organisation, science drivers and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for ∼ 3 million stars and detailed abundances for ∼ 1.5 million brighter field and open-cluster stars; (ii) survey ∼ 0.4 million Galactic-plane OBA stars, young stellar objects and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey  ∼ 400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionised gas in z 1 million spectra of LOFAR-selected radio sources; (viii) trace structures using intergalactic/circumgalactic gas at z > 2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator.PostprintPeer reviewe

    The wide-field, multiplexed, spectroscopic facility WEAVE: Survey design, overview, and simulated implementation

    Full text link
    WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366-959\,nm at R5000R\sim5000, or two shorter ranges at R20000R\sim20\,000. After summarising the design and implementation of WEAVE and its data systems, we present the organisation, science drivers and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for \sim3 million stars and detailed abundances for 1.5\sim1.5 million brighter field and open-cluster stars; (ii) survey 0.4\sim0.4 million Galactic-plane OBA stars, young stellar objects and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey 400\sim400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionised gas in z<0.5z<0.5 cluster galaxies; (vi) survey stellar populations and kinematics in 25000\sim25\,000 field galaxies at 0.3z0.70.3\lesssim z \lesssim 0.7; (vii) study the cosmic evolution of accretion and star formation using >1>1 million spectra of LOFAR-selected radio sources; (viii) trace structures using intergalactic/circumgalactic gas at z>2z>2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator.Comment: 41 pages, 27 figures, accepted for publication by MNRA

    Amyloid PET as a marker of normal-appearing white matter early damage in multiple sclerosis: correlation with CSF β-amyloid levels and brain volumes

    Get PDF
    PURPOSE The disease course of multiple sclerosis (MS) is unpredictable, and reliable prognostic biomarkers are needed. Positron emission tomography (PET) with β-amyloid tracers is a promising tool for evaluating white matter (WM) damage and repair. Our aim was to investigate amyloid uptake in damaged (DWM) and normal-appearing WM (NAWM) of MS patients, and to evaluate possible correlations between cerebrospinal fluid (CSF) β-amyloid (Aβ) levels, amyloid tracer uptake, and brain volumes. METHODS Twelve MS patients were recruited and divided according to their disease activity into active and non-active groups. All participants underwent neurological examination, neuropsychological testing, lumbar puncture, brain magnetic resonance (MRI) imaging, and F-florbetapir PET. Aβ levels were determined in CSF samples from all patients. MRI and PET images were co-registered, and mean standardized uptake values (SUV) were calculated for each patient in the NAWM and in the DWM. To calculate brain volumes, brain segmentation was performed using statistical parametric mapping software. Nonparametric statistical analyses for between-group comparisons and regression analyses were conducted. RESULTS We found a lower SUV in DWM compared to NAWM (p < 0.001) in all patients. Decreased NAWM-SUV was observed in the active compared to non-active group (p < 0.05). Considering only active patients, NAWM volume correlated with NAWM-SUV (p = 0.01). Interestingly, CSF Aβ concentration was a predictor of both NAWM-SUV (r = 0.79; p = 0.01) and NAWM volume (r = 0.81, p = 0.01). CONCLUSIONS The correlation between CSF Aβ levels and NAWM-SUV suggests that the predictive role of β-amyloid may be linked to early myelin damage and may reflect disease activity and clinical progression

    Measurement of the dependence of transverse energy production at large pseudorapidity on the hard-scattering kinematics of proton-proton collisions at √s=2.76 TeV with ATLAS

    Get PDF
    The relationship between jet production in the central region and the underlying-event activity in a pseudorapidity-separated region is studied in 4.0 pb-1 of s=2.76 TeV pp collision data recorded with the ATLAS detector at the LHC. The underlying event is characterised through measurements of the average value of the sum of the transverse energy at large pseudorapidity downstream of one of the protons, which are reported here as a function of hard-scattering kinematic variables. The hard scattering is characterised by the average transverse momentum and pseudorapidity of the two highest transverse momentum jets in the event. The dijet kinematics are used to estimate, on an event-by-event basis, the scaled longitudinal momenta of the hard-scattered partons in the target and projectile beam-protons moving toward and away from the region measuring transverse energy, respectively. Transverse energy production at large pseudorapidity is observed to decrease with a linear dependence on the longitudinal momentum fraction in the target proton and to depend only weakly on that in the projectile proton. The results are compared to the predictions of various Monte Carlo event generators, which qualitatively reproduce the trends observed in data but generally underpredict the overall level of transverse energy at forward pseudorapidity
    corecore