110 research outputs found

    How “Humane” Is Your Endpoint?—Refining the Science-Driven Approach for Termination of Animal Studies of Chronic Infection

    Get PDF
    Public concern on issues such as animal welfare or the scientific validity and clinical value of animal research is growing, resulting in increasing regulatory demands for animal research. Abiding to the most stringent animal welfare standards, while having scientific objectives as the main priority, is often challenging. To do so, endpoints of studies involving severe, progressive diseases need to be established considering how early in the disease process the scientific objectives can be achieved. We present here experimental studies of tuberculosis (TB) in mice as a case study for an analysis of present practice and a discussion of how more refined science-based endpoints can be developed. A considerable proportion of studies in this field involve lethal stages, and the establishment of earlier, reliable indicators of disease severity will have a significant impact on animal welfare. While there is an increasing interest from scientists and industry in moving research in this direction, this is still far from being reflected in actual practice. We argue that a major limiting factor is the absence of data on biomarkers that can be used as indicators of disease severity. We discuss the possibility of complementing the widely used weight loss with other relevant biomarkers and the need for validation of these parameters as endpoints. Promotion of ethical guidelines needs to be coupled with systematic research in order to develop humane endpoints beyond the present euthanasia of moribund animals. Such research, as we propose here for chronic infection, can show the way for the development and promotion of welfare policies in other fields of research. Research on chronic infection relies heavily on the use of animals, as only the integral animal body can model the full aspect of an infection. That animals are generally made to develop a disease in infection studies exacerbates the tension between human benefit and animal well-being, which characterizes all biomedical research with animals. Scientists typically justify animal research with reference to potential human benefits, but if accepting the assumption that human benefits can offset animal suffering, it still needs to be argued that the same benefits could not be achieved with less negative effects on animal welfare. Reducing the animal welfare problems associated with research (“refinement” [1]) is therefore crucial in order to render animal-based research less of an ethical problem and to assure public trust in research. Studies that are designed to measure time of death or survival percentages present a particularly challenging situation in which at least some of the animals are made to die from the disease. These studies are frequent in experimental research on severe infections. The scientific community, industry, and regulatory authorities have responded to the ethical concerns over studies in which animals die from severe disease by developing new policies and guidelines for the implementation of humane endpoints as a key refinement measure (e.g., [2]–[4]). The most widely used definition considers a humane endpoint to be the earliest indicator in an animal experiment of severe pain, severe distress, suffering, or impending death [5], underlining that ideally such indicators should be identified before the onset of the most severe effects. Euthanizing animals, rather than awaiting their “spontaneous” death, is important to avoid unnecessary suffering in studies in which data on survival is thought to be required for scientific or legal reasons. However, several questions remain open regarding how humane endpoints are to be applied to address real animal welfare problems. We used TB experiments in mice as a case study to highlight the potential to establish biomarkers of disease progress that can replace survival time as a measure of disease severity.Fundação para a CiĂȘncia e Tecnologia (SFRH/BD/38337/2007)

    A Single-Stranded DNA Aptamer That Selectively Binds to Staphylococcus aureus Enterotoxin B

    Get PDF
    The bacterium Staphylococcus aureus is a common foodborne pathogen capable of secreting a cocktail of small, stable, and strain-specific, staphylococcal enterotoxins (SEs). Staphylococcal food poisoning (SFP) results when improperly handled food contaminated with SEs is consumed. Gastrointestinal symptoms of SFP include emesis, diarrhea and severe abdominal pain, which manifest within hours of ingesting contaminated food. Immuno-affinity based methods directly detect, identify, and quantify several SEs within a food or clinical sample. However, the success of these assays depends upon the availability of a monoclonal antibody, the development of which is non-trivial and costly. The current scope of the available immuno-affinity based methods is limited to the classical SEs and does not encompass all of the known or emergent SEs. In contrast to antibodies, aptamers are short nucleic acids that exhibit high affinity and specificity for their targets without the high-costs and ethical concerns of animal husbandry. Further, researchers may choose to freely distribute aptamers and develop assays without the proprietary issues that increase the per-sample cost of immuno-affinity assays. This study describes a novel aptamer, selected in vitro, with affinity to staphylococcal enterotoxin B (SEB) that may be used in lieu of antibodies in SE detection assays. The aptamer, designated APTSEB1, successfully isolates SEB from a complex mixture of SEs with extremely high discrimination. This work sets the foundation for future aptamer and assay development towards the entire family of SEs. The rapid, robust, and low-cost identification and quantification of all of the SEs in S. aureus contaminated food is essential for food safety and epidemiological efforts. An in vitro generated library of SE aptamers could potentially allow for the comprehensive and cost-effective analysis of food samples that immuno-affinity assays currently cannot provide

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    • 

    corecore