38 research outputs found

    Dynamique des inondations dans le continuum rivière-estuaire-océan littoral du delta du Bengale : synergie de la modélisation hydrodynamique et de la télédétection spatiale

    Get PDF
    Le delta du Bengale est le plus vaste au monde. Il est formé par la confluence des trois rivières transfrontalières que sont le Gange, le Brahmapoutre et la Meghna. Des inondations massives frappent régulièrement cette région côtière très densément peuplée, située à seulement quelques mètres au-dessus du niveau moyen de la mer. Elles résultent du puissant cycle saisonnier des débits fluviaux, de la marée océanique très ample, et des cyclones tropicaux fréquents. Au cours des cinquante dernières années, les inondations de la partie littorale du delta ont fait plus de 500'000 victimes. La montée du niveau moyen de la mer ne va faire qu'aggraver la vulnérabilité de cette région où le taux de pauvreté est très élevé. Le long du littoral, les estrans sont les zones alternativement inondées à marée haute et découvertes à marée basse. Leur topographie joue un rôle important dans l'hydrodynamique littorale et dans les submersions qui surviennent lors des évènements extrêmes. En mettant en œuvre une synergie entre l'imagerie par télédétection spatiale de la constellation Sentinel-2 et la modélisation numérique de la marée, nous avons cartographié la topographie de l'estran du delta du Bengale sur une superficie de 1134 km2, avec une résolution de 10 m. Les marées, qui sont le facteur dominant de la variabilité du niveau de la mer côtier, sont apparues comme sensibles à la montée du niveau de la mer. Dans une hiérarchie de scénarios de montée du niveau de la mer représentatifs de l'évolution attendue au 21ème siècle, nous avons conclu que l'amplitude de marée devrait augmenter significativement avec la montée du niveau de la mer, à la fois dans le Sud-Ouest et dans le Sud-Est du delta. Au contraire, l'extension graduelle et massive de la superficie des estrans dans la partie centrale du delta devrait induire une nette atténuation de la marée, dans ces scénarios futurs. La marée joue par ailleurs un rôle central dans l'évolution des surcotes cyloniques. Un exercice de prévision du dernier super-cyclone ayant frappé le delta du Bengale avec notre plate-forme de modélisation hydrodynamique couplée marée-surcote-vagues a révélé la nécessité du couplage dynamique entre ces trois composantes de la submersion, et nous avons pu confirmer le rôle-clé de la topographie côtière dans le succès des prévisions numériques. Grâce à une approche ensembliste basée sur la simulation numérique hydrodynamique de plusieurs milliers de cyclones synthétiques, cohérents tant du point de vue de la physique que de la statistique, nous avons pu conclure qu'il y a à l'heure actuelle de l'ordre de 10% de la population côtière du delta, soit trois millions de personnes, résidant dans la zone exposée à la submersion cinquentennale. La compréhension et la quantification des mécanismes de l'inondation exposés dans cette thèse constituent une information pertinente pour contribuer à l'ingénierie des infrastructures côtières, à la gestion du risque, ainsi qu'à l'élaboration de l'agenda de la recherche en hydrodynamique côtière sur le delta du Bengale.The Bengal delta is the largest in the world. It is formed by the confluence of three transboundary rivers - Ganges, Brahmaputra, and Meghna. Flooding induced by large seasonal continental discharge, strong tide, and frequent deadly storm surges, regularly strikes this densely populated (density > 1000 person/km2), low-lying coastal region (<5 m above mean sea level). In the last five decades, coastal flooding took more than half a million lives. Ongoing global sea level rise (SLR) will only further aggravate the vulnerability of this impoverished region. Along the shoreline, intertidal zones are the first landmass that gets flooded, periodically between each high- and low-tide. Their topography plays an important role in the coastal hydrodynamics and associated flooding during extremes. A synergy between remote sensing from Sentinel-2 constellation and tidal numerical modelling allowed us to map an intertidal area of 1134 km2 and its topography at 10 m resolution. Tides, that prominently drive the variability of coastal sea level, are shown to be sensitive to SLR. In future SLR scenarios in line with the 21st century forecasts, we found that the tidal amplitude will significantly increase with SLR over both the south-western and south-eastern parts of the delta. In contrast, the central part of the delta will potentially experience massive free-flooding of river banks, hereby inducing a decay of the tidal amplitude. Tide plays a vital role in the evolution of storm surges also. Hindcast simulation of a recent super cyclone with our coupled tide-surge-wave model reveals the necessity of the coupling between tide, surge and wave modelling, and confirmed the crucial role played by the coastal topography for effective inundation modelling and forecast. With an ensemble forecast of thousands of physically and statistically consistent synthetic cyclones, we could conclude that about 10% of the coastal population of the Bengal delta, amounting to 3 million people, currently lives exposed to the 50-year return period flooding. The understanding and quantification of the inundation mechanisms extended in this study is expected to help with coastal infrastructure engineering, risk zoning, resource allocation and future adaptation to coastal flood across the Bengal delta

    Type 2 diabetes and its correlates among adults in Bangladesh: a population based stud

    Get PDF
    Type 2 diabetes is one of the most prevalent non-communicable diseases in Bangladesh. However, the correlates of type 2 diabetes among adults in Bangladesh remain unknown. We aimed to investigate the correlates of type 2 diabetes among the adults in Bangladesh. Methods : We conducted a cross-sectional study using data from the nationally representative 2011 Bangladesh Demographic and Health Survey. A random sample of 7,543 (3,823 women and 3,720 men) adults of age 35 years and older from both urban and rural areas, who participated in the survey was included. Diabetes was defined as having a fasting plasma blood glucose level of ≥ 7 mm/L or taking diabetes medication during the survey. Hypothesized factors, e.g., age, sex, education, place of residence, social status, body mass index, and hypertension were considered in the analyses. Multivariable logistic regression models were used to identify the important correlates of type 2 diabetes. Results : Among the respondents, the overall prevalence of diabetes was 11 %, and the prevalence was slightly higher in women (11.2 %) than men (10.6 %). Respondents with the age group of 55–59 years had higher odds of having diabetes (odds ratios (OR) = 2.37, 95 % confidence interval (CI): 1.76–3.21) than the age group of 35–39 years. Moreover, respondents who had higher educational attainment (OR = 1.67, 95 % CI: 1.18–2.36) and higher social status (OR = 2.01, 95 % CI: 1.50–2.70) had higher odds of having diabetes than the respondents with no education and lower social status, respectively. We also found socioeconomic status, place of residence (rural or urban), regions of residence (different divisions), overweight and obesity, and hypertension as significant correlates of type 2 diabetes in Bangladesh. Conclusions: Our study shows that older age, higher socioeconomic status, higher educational attainment, hypertension, and obesity were found to be significant correlates of type 2 diabetes. Need-based policy program strategies including early diagnosis, awareness via mass media, and health education programs for changing lifestyles should be initiated for older age, wealthy, and/or higher educated individuals in Bangladesh. Moreover, area-specific longitudinal research is necessary to find out the underlying causes of regional variations

    Extension of high temporal resolution sea level time series at Socoa (Saint Jean-de-Luz, France) back to 1875

    Get PDF
    In this data paper sea level time series at Socoa (Saint Jean-de-Luz, Southwestern France) is extended in a data archaeology exercise. We have catalogued water level records stored in ledgers and charts, as well as other associated documents (metadata) in thorough research of national and local archives. An extensive effort was made to rescue these documents by archiving them in digital formats. Based on this large set of rescued documents, the Socoa time series is further extended back in time by about 40 years, at hourly (for ledgers) to 5-minutes (for charts) sampling. Analysis of the precise levelling information reveals that the datum of the tide gauge site has been stable. We assessed the consistency of this new century-long time series based on nearby tide gauge data. Although the overall timeseries is generally consistent, siltation is found to be a recurrent problem of the stilling well which impacted some part of the extended data. However, being a high temporal resolution sea level time series spanning more than 100 years, this new dataset will be useful for advancing climate research, particularly the decadal scale variations in the North Atlantic, as well as the storminess and extreme events along the French Basque coastal region.</p

    The 2022 dengue outbreak in Bangladesh: hypotheses for the late resurgence of cases and fatalities

    Get PDF
    Bangladesh reported the highest number of annual deaths (n = 281) related to dengue virus infection in 2022 since the virus reappeared in the country in 2000. Earlier studies showed that >92% of the annual cases occurred between the months of August and September. The 2022 outbreak is characterized by late onset of dengue cases with unusually higher deaths in colder months, that is, October-December. Here we present possible hypotheses and explanations for this late resurgence of dengue cases. First, in 2022, the rainfall started late in the season. Compared to the monthly average rainfall for September and October between 2003 and 2021, there was 137 mm of additional monthly rainfall recorded in September and October 2022. Furthermore, the year 2022 was relatively warmer with a 0.71°C increased temperature than the mean annual temperature of the past 20 yr. Second, a new dengue virus serotype, DENV-4, had recently reintroduced/reappeared in 2022 and become the dominant serotype in the country for a large naïve population. Third, the post-pandemic return of normalcy after 2 yr of nonpharmaceutical social measures facilitates extra mosquito breeding habitats, especially in construction sites. Community engagement and regular monitoring and destruction of Aedes mosquitoes' habitats should be prioritized to control dengue virus outbreaks in Bangladesh

    Increased population exposure to Amphan‐scale cyclones under future climates

    Get PDF
    International audienceAbstract Southern Asia experiences some of the most damaging climate events in the world, with loss of life from some cyclones in the hundreds of thousands. Despite this, research on climate extremes in the region is substantially lacking compared to other parts of the world. To understand the narrative of how an extreme event in the region may change in the future, we consider Super Cyclone Amphan, which made landfall in May 2020, bringing storm surges of 2–4 m to coastlines of India and Bangladesh. Using the latest CMIP6 climate model projections, coupled with storm surge, hydrological, and socio‐economic models, we consider how the population exposure to a storm surge of Amphan's scale changes in the future. We vary future sea level rise and population changes consistent with projections out to 2100, but keep other factors constant. Both India and Bangladesh will be negatively impacted, with India showing >200% increased exposure to extreme storm surge flooding (>3 m) under a high emissions scenario and Bangladesh showing an increase in exposure of >80% for low‐level flooding (>0.1 m). It is only when we follow a low‐emission scenario, consistent with the 2°C Paris Agreement Goal, that we see no real change in Bangladesh's storm surge exposure, mainly due to the population and climate signals cancelling each other out. For India, even with this low‐emission scenario, increases in flood exposure are still substantial (>50%). While here we attribute only the storm surge flooding component of the event to climate change, we highlight that tropical cyclones are multifaceted, and damages are often an integration of physical and social components. We recommend that future climate risk assessments explicitly account for potential compounding factors

    Phytol: A review of biomedical activities

    Get PDF
    © 2018 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: http://creativecommons.org/licenses/by-nc-nd/4.0/ This author accepted manuscript is made available following 12 month embargo from date of publication (Auguist 2018) in accordance with the publisher’s archiving policyPhytol (PYT) is a diterpene member of the long-chain unsaturated acyclic alcohols. PYT and some of its derivatives, including phytanic acid (PA), exert a wide range of biological effects. PYT is a valuable essential oil (EO) used as a fragrance and a potential candidate for a broad range of applications in the pharmaceutical and biotechnological industry. There is ample evidence that PA may play a crucial role in the development of pathophysiological states. Focusing on PYT and some of its most relevant derivatives, here we present a systematic review of reported biological activities, along with their underlying mechanism of action. Recent investigations with PYT demonstrated anxiolytic, metabolism-modulating, cytotoxic, antioxidant, autophagy- and apoptosis-inducing, antinociceptive, anti-inflammatory, immune-modulating, and antimicrobial effects. PPARs- and NF-κB-mediated activities are also discussed as mechanisms responsible for some of the bioactivities of PYT. The overall goal of this review is to discuss recent findings pertaining to PYT biological activities and its possible applications

    Measuring universal health coverage based on an index of effective coverage of health services in 204 countries and territories, 1990–2019 : A systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages. Methods Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (≥65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0–100 based on the 2·5th and 97·5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion target—1 billion more people benefiting from UHC by 2023—we estimated additional population equivalents with UHC effective coverage from 2018 to 2023. Findings Globally, performance on the UHC effective coverage index improved from 45·8 (95% uncertainty interval 44·2–47·5) in 1990 to 60·3 (58·7–61·9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2·6% [1·9–3·3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010–2019 relative to 1990–2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0·79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach 1398pooledhealthspendingpercapita(US1398 pooled health spending per capita (US adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388·9 million (358·6–421·3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3·1 billion (3·0–3·2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968·1 million [903·5–1040·3]) residing in south Asia. Interpretation The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all people—the ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how close—or how far—all populations are in benefiting from UHC

    Measuring universal health coverage based on an index of effective coverage of health services in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages. Methods Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (≥65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0–100 based on the 2·5th and 97·5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion target—1 billion more people benefiting from UHC by 2023—we estimated additional population equivalents with UHC effective coverage from 2018 to 2023. Findings Globally, performance on the UHC effective coverage index improved from 45·8 (95% uncertainty interval 44·2–47·5) in 1990 to 60·3 (58·7–61·9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2·6% [1·9–3·3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010–2019 relative to 1990–2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0·79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach 1398pooledhealthspendingpercapita(US1398 pooled health spending per capita (US adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388·9 million (358·6–421·3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3·1 billion (3·0–3·2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968·1 million [903·5–1040·3]) residing in south Asia. Interpretation The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all people—the ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how close—or how far—all populations are in benefiting from UHC

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods: GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation: As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and developm nt investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015)

    Get PDF
    corecore