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Abstract
Southern Asia experiences some of the most damaging climate events in the
world, with loss of life from some cyclones in the hundreds of thousands. Despite
this, research on climate extremes in the region is substantially lacking compared
to other parts of the world. To understand the narrative of how an extreme event
in the region may change in the future, we consider Super Cyclone Amphan,
which made landfall in May 2020, bringing storm surges of 2–4 m to coastlines
of India and Bangladesh. Using the latest CMIP6 climate model projections,
coupled with storm surge, hydrological, and socio-economic models, we con-
sider how the population exposure to a storm surge of Amphan’s scale changes
in the future. We vary future sea level rise and population changes consistent
with projections out to 2100, but keep other factors constant. Both India and
Bangladesh will be negatively impacted, with India showing >200% increased
exposure to extreme storm surge flooding (>3 m) under a high emissions sce-
nario and Bangladesh showing an increase in exposure of >80% for low-level
flooding (>0.1 m). It is only when we follow a low-emission scenario, consistent
with the 2◦C Paris Agreement Goal, that we see no real change in Bangladesh’s
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storm surge exposure, mainly due to the population and climate signals can-
celling each other out. For India, even with this low-emission scenario, increases
in flood exposure are still substantial (>50%). While here we attribute only the
storm surge flooding component of the event to climate change,we highlight that
tropical cyclones are multifaceted, and damages are often an integration of phys-
ical and social components. We recommend that future climate risk assessments
explicitly account for potential compounding factors.

KEYWORDS
attribution, climate change, extreme weather, projections, tropical cyclone, vulnerability

1 INTRODUCTION

Tropical cyclones pose the largest environmental risk
to the countries bordering the Bay of Bengal, with
Bangladesh in particular seeing cyclone-related deaths
an order of magnitude higher than any other country
in the world (Shultz et al., 2005). One of the world’s
most lethal recorded natural disasters, Cyclone Bhola
which hit Bangladesh in 1970, led to over half a million
lives lost. There have been numerous other examples of
cyclones in this region, and a detailed list is given in the
Database of Cyclonic Storms in Bangladesh, West Ben-
gal, and Odisha for the period 1877–2016 (Bandyopadhyay
et al., 2018; or https://datacatalog.worldbank.org/dataset/
cyclone-dataset), showing more than 170 cyclones making
landfall since 1877. A number of these have caused deaths
in the tens and hundreds of thousands, with Cyclone Nar-
gis in 2008 perhaps being the most recent (Fritz et al.,
2009).
Super cyclones, defined as storms with sustained winds

of over 220 km/h, are multi-hazard events. During these
events, it is often the storm surge flood inundation that
leads to the majority of deaths, sometimes accounting for
up to 80% of the total mortality (Shultz et al., 2005). In
Bangladesh, for instance, it is the storm surge-induced
flood inundation that is by far the most dangerous impact
of a cyclone for human life (Chowdhury et al., 1992;
Lin et al., 2012; Shultz et al., 2020). However, damages
extend to significant losses to agriculture, finance, and
long pauses in economic growth (Islam & Peterson, 2009).
Despite the high societal risks, cyclones in this area have
received significantly less attention than those in other
cyclone basins (e.g. the IPCC Special Report on 1.5◦C;
Hoegh-Guldberg et al., 2018), with examples in those
basins including Lin et al. (2012, 2016), Lin and Emanuel
(2016), Patricola and Wehner (2018), and Vosper et al.
(2020). The studies that do exist show that storm surge-
induced population exposure from climate change is a seri-
ous issue for India, Bangladesh, and Myanmar, with all

three being among the 10most exposed coastlines to storm
surges in the world (Rahman et al., 2019). Notably, other
countries in the top 10 have considerably higher GDP, and
thus potential for resilient infrastructure (Nicholls et al.,
2008; Dasgupta et al., 2011).
In the Bay of Bengal, the seasonality of cyclogenesis is

more complex than other cyclone basins, and does not fol-
low the summer increase in sea surface temperatures as
onemight expect.While the increase in sea surface temper-
atures is still a key factor for cyclones forming in the region
(Krishna, 2009), the cyclogenesis is bimodal in time, with
maxima in both early to mid-summer (April–May) due
to increased relative humidity fuelling storm formation,
and in autumn (October–November) due to decreased ver-
tical wind shear not shearing the storm apart (Yanase
et al., 2012; Li et al., 2013). Throughout the rainy season
(June–August), the cyclogenesis is significantly impeded
by strong vertical wind shears, amongst other factors such
as local vorticity (Yanase et al., 2012). This additional com-
plexity further reinforces the need for more research into
cyclones occurring in this region, to increase understand-
ing of present-day cyclones both in terms of their dynamics
as well as their impacts, which may vary depending on the
month that the cyclone occurs, particularly in the case of
agricultural impacts.
Damages from cyclones that make landfall are multi-

faceted, being a product of the physical climate system
(i.e. the cyclone), on the one hand, and socio-economic
and behavioural patterns on the other (Shultz et al., 2005).
Access to good quality forecasts, disaster response train-
ing, and resilient storm shelters are essential to reduce
the vulnerability to storm surge, and many of the poorer
households along the coast of South Asia do not have these
advantages (Bern et al., 1993; Fritz et al., 2009; Hossain,
2015). For example, the cost of forecasting centres work-
ing together to provide better cyclone lead times is orders
of magnitude lower than the costs of damages associated
with these cyclones on unprepared populations. This point
was argued clearly when comparing the mortality counts

https://datacatalog.worldbank.org/dataset/cyclone-dataset
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of intense tropical cyclones hitting the east coast of Amer-
ica, against those hitting Bangladesh and Myanmar (Web-
ster, 2013). For adaptation measures to be put in place
at the national level, the costs can easily reach several
percent of a country’s GDP, and this is certainly true for
India and Bangladesh (Anguelovski et al., 2016; Oppen-
heimer et al., 2019). A number of studies have shown that
future increased risk from tropical cyclone flooding is dom-
inated by sea level rise (SLR), allowing the storm surge to
reach further inland (Knutson et al., 2010, 2020; Woodruff
et al., 2013; Lin et al., 2016), with Dastagir (2015) provid-
ing an overview specifically of Bangladesh. For instance,
even under moderate SLR (∼0.25 m) resilience investment
would cost Bangladesh more than $2.5 billion, with ongo-
ing costs of ∼$50 million annually (Dasgupta et al., 2014).
The problem is not one that can be solved entirely with
adequate finance, and Bangladesh in particular has clear
examples of low-exposure land being taken by powerful
groups, leaving themore exposed regions to those least able
to adapt (Sovacool, 2018; Oppenheimer et al., 2019).
Behavioural responses to cyclones add a layer of com-

plexity onto an already complex physical science problem.
While there are consistent messages that globally the most
intense tropical cyclones will increase in frequency under
climate change (Walsh et al., 2019; Knutson et al., 2020),
less confidence is obtained at the basin level. For the satel-
lite era, studies in the North Indian Ocean are somewhat
contradictory, with cyclone energy-based metrics show-
ing an increase in the most intense storms (Yu & Wang,
2009; Balaji et al., 2018), but cyclone count-based met-
rics showing a decrease (Mohapatra et al., 2017). Attribut-
ing the characteristics of any ‘specific’ cyclone event to
particular causes is extremely difficult, while at the same
time such ‘extreme event attribution’ methodologies have
been very insightful for different types of extreme weather
event (NAS, 2016). Certainly, no such event attribution
study exists for the Bay of Bengal basin. Although there
have been some studies focussing on the Atlantic basin,
due to the complex nature of cyclones, they have con-
centrated on the meteorological response, namely precip-
itation (Emanuel, 2017; Risser & Wehner, 2017; Van Old-
enborgh et al., 2017) or wind speed (Patricola & Wehner,
2018), rather than the hazard response. However, two
examples of attribution of the hazards are Lin et al. (2016)
andWehner and Sampson (2021). Lin et al. (2016)„ showed
that the return period for Hurricane Sandy’s flood height
in New York would decrease by ∼4.4 times, from 2000 to
2100, under a moderate-emission scenario. Wehner and
Sampson (2021) showed that the attributable increase in
flood area was lower than the attributable increase in
precipitation alone. Here, we consider the storm surge-
inducted flood hazard, applied to the Bay of Bengal Super
CycloneAmphan.We also consider the change in exposure

of the populations in its path. Specifically, our main aim is
to ‘understand how population exposure to an Amphan-
scale storm surge would change with different future lev-
els of SLR’, and in doing some we have the following sub-
aims:

1. To focus specifically on a single tropical cyclone,
Amphan, in order to understand the narrative of that
event in the present and future, while at the same
time recognizing that different tropical cyclones mak-
ing landfall on the Indo–Bangladesh shoreline may
have different impacts.

2. To study a recent event, which is not too extreme, high-
lighting how even the impacts of events of this scale can
become ‘extreme’ under a changing climate.

3. To isolate the exposure purely from climate change or
population change within the region, rather than from
future adaptive or other socioeconomic changes, thus
highlighting the potential impact if relevant decisions
are not made ahead of time.

2 METHODS

2.1 Cyclone Amphan damage data

Secondary data for the emergency response to Super
Cyclone Amphan, the damage estimates, and the reports
of interplay with COVID19 were obtained from situa-
tion reports by several NGOs (namely the Red Cross/Red
Crescent, and Climate Central), and supplemented by
some Bangladeshi governmental departments, including
theDepartment forDisaster RiskReduction. The datawere
collected in the days following the cyclone impact using
surveys (called D forms) by NGO teams in the field, and
sent to a central team. These teams collated the data and
combined it with assessments from satellite images of the
affected areas. Most of these data are only available for
Bangladesh; however, as the cyclone also hit parts of India,
the expected damagewill also be high there.Myanmarwas
less impacted by this particular cyclone.

2.2 Climate model projections

For the global mean temperature and SLR calculations,
we use models from the Coupled Model Intercomparison
Project (CMIP6) (Eyring et al., 2016). For global mean tem-
perature calculations, we adopt the IPCC Special Report
on 1.5◦C definition of the Paris Agreement climate goals
(Allen et al., 2018), which defines ‘pre-industrial’ as the
average period from 1850 to 1900, and considers a global
mean temperature increase of 1.5 and 2◦C relative to that.
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To calculate the global mean temperature, we use area-
weighted ‘temperature of air at the surface (tas)’ from
each of the models. We use three separate future scenar-
ios, as prescribed in the CMIP6 models as low emission
(SSP1-RCP2.6), business-as-usual (SSP2-RCP4.5), and high
emission (SSP5-RCP8.5). The Shared Socio-economic Path-
way (SSP) label in each scenario gives information about
the change in socioeconomics, including population (see
Section 2.5), and the RCPs (Representative Concentration
Pathways) give the radiative forcing scenario, which repre-
sents, for example, an increase of 2.6 W/m2 by 2100 for the
RCP2.6 case.
The projections of SLR over the period 2020–2100

were obtained from the same CMIP6 experiments, but
also included other published values and datasets. As
the CMIP6 climate models have oceans that conserve
volume rather than mass (the so-called Boussinesq-
approximation), their sea level does not reflect net steric
expansion (Greatbatch, 1994). Therefore, global mean
steric height was calculated for each available SSP-RCP
model run by computing density from the potential tem-
perature and salinity fields, vertically integrating the den-
sity anomaly (relative to the mean density) to obtain two-
dimensional steric height fields, and finally integrating
over the ocean surface to obtain timeseries of global mean
steric expansion. This was then added to the correspond-
ing dynamic sea level and the annual means for 2020 and
2100 were calculated.
Corresponding estimates of SLR due to mass input were

obtained from Oppenheimer et al. (2019) (see their table
4.4). The mass contributions to global mean SLR for RCPs
2.6, 4.5, and 8.5 were obtained simply by subtracting the
given steric contributions (based on CMIP5 models) from
the total SLR for each RCP. A further 3.5 cm—as per a 25-
year accumulation of the observed 1.4mm/year rate of SLR
due tomass flux, as given in Oppenheimer et al. (2019) (see
their table 4.1)—was subtracted to adjust the SLR values
to the 2020–2100 period required for this study. The final
values obtained for RCPs 2.6, 4.5, and 8.5 were 0.22, 0.27,
and 0.41m, respectively. These were then added to the SLR
maps for the corresponding SSP-RCP runs.
The SLR for the Bay of Bengal for each model run was

obtained by computing the area mean over the region (10–
24 ◦N, 78–98 ◦E) for each map. The values obtained were
adjusted to account for the regional relative sea level vari-
ations due to Glacial Isostatic Adjustment (GIA) and the
gravitational influence of the ice-sheets. GIA was obtained
from the ICE-6G_C model (Peltier et al., 2015), averaged
over the Bay of Bengal to give a small drop in relative sea
level (uplift) of 1.4 cm between 2020 and 2100. In deter-
mining regional variations in sea level due to the gravi-
tational influence of ice sheets, glaciers, and other bod-
ies of water, only fingerprints associated with Greenland

and Antarctica ice sheets were considered. According to
sea level fingerprints in the Bay of Bengal (Milne et al.,
2009; Church et al., 2013), gravitational effects will amplify
the global mean SLR from the Greenland and the Antarc-
tic ice sheets by approximately 20% and 10%, respectively.
Using the Greenland andAntarctic contributions provided
by Oppenheimer et al. (2019) (see their table 4.4), this will
result in an additional SLR in the Bay of Bengal of 1.8, 2.2,
and 3.6 cm for RCPs 2.6, 4.5, and 8.5, respectively. Since
Church et al. (2013) (see their figure 13.17) suggest a small
(<1 cm) fall in sea level due to increased atmospheric load-
ing (the inverted-barometer response) over the Bay of Ben-
gal, and it is not possible to accurately estimate vertical
land motion due to subsidence, these processes were not
included in the analysis. For each future scenario, to avoid
bias in cases where there are multiple realizations of a par-
ticular model, these are combined to form a mean SLR
value for the Bay of Bengal (or SLR map) for that model.

2.3 Flood inundation modelling

To model the storm surge-induced inundation from
Cyclone Amphan, forecasts of water height along the
coastline were taken from a high-resolution tide-surge
model implemented on an unstructured grid over the
Northern Bay of Bengal and passed as boundary conditions
to a hydrodynamicmodel to simulate inland flooding. This
approach was chosen to allow a detailed, spatially variable
set of time-varying water heights to be passed to the hydro-
dynamic model.
The tide-surge model is based on SCHISM-WWM

(Zhang et al., 2016) and is online coupled with a spec-
tral wave model to account for the wave setup over the
nearshore region. We have used FES2012 (Carrère et al.,
2013) tidal water level to force our model at the ocean
boundary and climatological discharges at the river bound-
aries. The atmospheric forcing for Cyclone Amphan is
derived from a combination of the JTWC best-track esti-
mate and the NOAA HWRF forecast using published ana-
lytical formulae for the wind (Emanuel & Rotunno, 2011)
and pressure fields (Holland, 1980). Our model is solved
at 5-min timesteps while updating the wave field every 30
min. Finally, simulated water heights are extracted at 30-
min intervals along the coastline and provided as boundary
conditions for the Fathom flood inundation model (Samp-
son et al., 2015).
The Fathom flood model is a two-dimensional hydro-

dynamic model based on the LISFLOOD-FP numerical
scheme. It solves a local inertia approximation of the Shal-
low Water equations (Bates et al., 2010; de Almeida &
Bates, 2013) over a 3-arcsecond (∼90 m) spatial resolution
regular grid, with river channels treated as variable-width
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sub-grid scale features in one dimension. The model has
been applied in a simplified manner to this site previ-
ously (Lewis et al., 2013) and in a range of modelling stud-
ies since, including to simulate tropical cyclones (Wing
et al., 2019). The Digital Elevation Model (DEM) that
provides terrain elevations to the hydrodynamic model
is obtained from MERIT-DEM, a 3-arcsecond global ter-
rain dataset that is the most accurate freely available
global terrain dataset for flood modelling (Yamazaki et al.,
2017). MERIT-DEM combines elevation data from several
sources (SRTM,ASTER, ICEsat), which are then processed
to remove vegetation, stripe noise, randomnoise, and abso-
lute biases. It has been proven to resolve many errors in
flat floodplains (like those in the Bay of Bengal) that are
present in other satellite-based terrain datasets (Yamazaki
et al., 2017). The DEM has been processed further to cor-
rect for urban developments by applying a filter based on a
remotely sensed global urban footprint dataset to remove
data at cells classified as urban in areas of low gradient.
Corrected elevations at these locations are then interpo-
lated from the remaining neighbouring elevation data.
The hydrodynamic model takes the modelled water

heights from the storm surge model, linearly combined
with future climate-induced perturbations, and applies
these as a height-varying boundary condition across its
coastline. The simulations were performed at the native
spatial resolution of MERIT-DEM (3 arcsecond). The
height and location of flood defence polders in Bangladesh
were provided by the Bangladesh Water Development
Board. The heights of the polders were converted from
Public Works Datum to mean sea level and burnt into the
DEMof the hydrodynamicmodel. Flood defence datawere
not available in India so have not been included.Maximum
water depths from the hydrodynamic model are computed
across all cells over the course of the simulation to under-
take exposure analyses. As the hydrodynamicmodel simu-
lates water heights, the model will be sensitive to both the
size of a storm surge and with how the time of the peak
storm surge coincides with the phase of the tide.
One of the uncertainties in modelling flood inunda-

tions is the choice of terrain data that is used to build
the DEM that defines the ground elevations. This is espe-
cially the case when building large-scale models in loca-
tionswith limited local data available to supplement global
datasets, particularly in locations where geomorphological
processes cause ground elevations to change over time, for
example through coastal erosion or land subsidence. The
DEM used here, MERIT, is a derivative of SRTM that has
multiple error sources reduced (e.g. the removal of strip-
ping, noise, and errors from vegetation). This results in
significant improvements upon the raw SRTM data, with
approximately 50% of flat unvegetated areas (slope less
than 10%) having a vertical error of less than 1 m and 72%

less than 2 m. Errors are also shown to be small within
our study area (Figure 2c in Yamazaki et al 2017). Fur-
thermore, Hawker et al. (2019) also found MERIT-DEM to
havemean errors of approximately 1mwhen assessing per-
formance across multiple flat locations (like those in this
study). Since these studies, we havemade further improve-
ments to the MERIT-DEM by incorporating the eleva-
tions of Polders in Bangladesh to ensure that these flood
defences are correctly accounted for in the hydrodynamic
simulations.We also considered using another globalDEM
(CoastalDEM, Kulp & Strauss, 2019), but found Coastal-
DEM to be noisy and have striping artifacts in our study
site which is not conducive to flood simulations (see
Figure S3).

2.4 Hydrodynamic model validation

The hydrodynamic model used in this study (LISFLOOD-
FP) has previously been validated in being able to replicate
several physically based test cases (de Almeida & Bates,
2013). However, validating the modelled flood extents for
this event is difficult due to the limited observations of
flood extent that can be directly attributed to the storm
surge. This is primarily due to the timing and noise present
in satellite overpasses and uncertainty in field observa-
tions. For example, imagery from Sentinel-1 is only avail-
able for 22 May 2020, 2 days after the Cyclone made land-
fall. This means that not only will the peak inundation
caused by the storm surge have been missed due to the
delay between the peak storm surge and satellite overpass,
but that there are likely to be significant amounts of sur-
face water flooding caused by excess rainfall and not by
the storm surge that are detected in the Sentinel-1 image.
This is especially the case given that the rate of rainfall
was in the range of 50–60 mm/h across many districts in
the West Bengal region, including a cumulative daily total
of 650 mm over Purba Medinipur on 20th May (Michra &
Vanganuru, 2020). In addition to this, many areas will be
either permanently or seasonally flooded, whilst the pres-
ence of mangroves such as those in the Sundarbans can
inhibit the ability of satellites to detect water on the sur-
face.
Given the above, we have compared our model to

two data sources. The first is a processed version of
Sentinel-1 produced using the s1flood algorithm described
in DeVries et al. (2020). Surface water is classified into
several categories—flood, seasonal inundation, and per-
manent water. It is important to note that the classifi-
cation scheme does not distinguish between the process
that caused flooding, so we cannot distinguish if flood-
ing was caused by coastal flooding, riverine flooding, or
excess rainfall. Unfortunately, as the Sentinel overpass was
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F IGURE 1 Comparison of defended to undefended hydrodynamic model for a selected area in Khulna, Bangladesh. Panel (a) shows the
defended model, with observations from Sentinel (pink) and reported breaches (white dots). Modelled inundation (dark blue to light pink) is
minimal due to the presence of polders. Panel (b) shows the undefended version of the hydrodynamic model. Modelled inundation matches
correspond more closely with the observation data. Panel (c) shows an inset map. Beige represents seasonal inundation as classified by the
s1flood (deVries et al., 2020) tool

∼2 days after landfall only the remnants of coastal flooding
are likely to be captured, and thus we would expect to see
a much smaller inundation extent recorded by Sentinel.
The second observational data source is geotagged

reports of flooding from local Bengal Delta newspapers
(Khan, 2020). In total, 88 locations were digitized, with a
flooding mechanism of breaching, overtopping, or high-
tide assigned to each. The news reports of dike breaches
in India were not deemed of satisfactory quality by Khan
(2020), so the reports are limited to Bangladesh. This
dataset has the benefit of being more directly comparable
to the storm surge model as most reports are on the day
of landfall or the day after. However, the dataset does have
limited geographic coverage and does not give inundation
extent. Moreover, the geolocation of reports is likely to be
subject to uncertainty and their accuracy may not be com-
mensurate with the resolution of Sentinel 1 (∼10 m) and
the hydrodynamic model (∼90 m)
In areas in Bangladesh, the hydrodynamic matches rea-

sonably with the Sentinel imagery, albeit with a smaller
extent. Visualizing a comparison of the entire region is dif-
ficult given the fine-scaled nature of flood inundation, but
a representative region is given in Figure 1b. As expected,
the Sentinel flooding has a smaller extent than the model
due to the coastal flooding receding. In general, how-
ever, for this region and other regions of Bangladesh (not

shown) we see reasonable agreement between the two
observational data sources, and the modelled flood extent,
especially given the limitations noted above. Areas where
the model performs less favourably are in West Bengal,
India which is most likely due to the absence of Indian
polders in the model, but also possibly the coastal flood-
ing receding by the time of the satellite overpass.Moreover,
in the Sundarbans, the hydrodynamic model shows flood-
ing in this region, but the SAR-based Sentinel imagery
does not due to difficulty in characterizing the appropriate
backscatter for flooding in vegetation (and indeed heavily
built-up areas) (DeVries et al., 2020; Singha et al., 2020).
The newspaper dataset identified some of the pold-

ers that were breached during the storm surge. However,
these breaches would not be included within our defended
model and therefore we would not expect the defended
model to show flooding in these locations. As the exact
number, location, and size of the breaches are not known,
we have run an undefended model without polders to
capture this unknown within our modelling (Figure 1).
We compare the defended model (Figure 1a), with the
undefended model (Figure 1b) for an area in Khulna,
Bangladesh. We overlay the Sentinel-derived flood extent,
as well as locations of reported breaches. In the defended
model, modelled flooding is limited and is less than
the Sentinel-derived flood extents. However, in the
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undefendedmodel, the model flood extents compare more
favourably to the Sentinel imagery, with the largest areas
of flooding occurring at reported breach points.
Both sources of flood observation are subject to large

uncertainties, but are the best available to aid in validat-
ing the hydrodynamic model. As noted before, the obser-
vational data and modelled data do not necessarily show
the same thing (i.e. coastal flooding) at the same time (i.e.
the satellite observations are ∼2 days after landfall), thus a
stringent validation is not possible. However, it does allow
for a qualitative comparison, especially given our under-
standing of the events as they unfolded. This, combined
with the previous validation studies of the model, gives us
confidence that our flood inundation modelling is captur-
ing the relevant processes for this event, in the relevant
locations, at least within the uncertainties addressed pre-
viously.

2.5 Exposure response

The number of people exposed to flooding (hereafter
referred to as flood exposure) is calculated by overlaying
the projected flooded area on a gridded population dataset.
In this study, we use the High-Resolution Population Den-
sityMap (HRPDM) at 1 arcsecond resolution (∼30m) avail-
able at the Humanitarian Data Exchange (Facebook Con-
nectivity Lab, 2016). HRPDM is a follow-up of the High-
Resolution Settlement Layer (HRSL) project and currently
covers most countries. We chose to use HRPDM as it has
been demonstrated that other coarser resolution gridded
population products tend to overestimate flood exposure
compared to HRSL, especially in rural areas (Smith et al.,
2019). This is due to a low-density spreading of population
in rural areas in data sets other than HRDPM. Population
is then aggregated to 3 arcsecond (∼90 m) to be commen-
surate with the resolution of the flood inundation data.
To calculate future flood exposure, gridded population

projections are required. To be consistent with our climate
emission scenarios, we use the CMIP6 Shared Socioeco-
nomic Pathways (SSP) population and urbanization pro-
jections, available at country level (IISA; Jiang & O’Neill,
2017; Riahi et al., 2017; Samir & Lutz, 2017). The SSP sce-
narios are not gridded. Gridded population projections for
India and Bangladesh exist at resolutions of∼13 km (Jones
& O’Neil., 2016) and ∼1 km (Merkens et al., 2016; Gao,
2017). Calculating flood exposure using gridded popula-
tion data at the kilometre scale is likely to lead to sig-
nificant overestimation (Smith et al., 2019). Furthermore,
the aforementioned gridded population projection prod-
ucts unrealistically spread population in rural areas which
leads to further overestimation as noted above. Therefore,
to create a more plausible estimate of population projec-

tions that is commensurate with our flood hazard data,
we use the methods of Boke-Olen et al. (2017) to produce
population projections at 3 arcsecond (∼90 m) resolution
for 2100 based on the SSP and RCP combinations high-
lighted earlier (SSP1 RCP2.6; SSP2 RCP4.5; SSP5 RCP 8.5)
and the HRPDM population data for 5 Bangladeshi Divi-
sions (Barisal, Chittagong, Dhaka, Khulna, and Rajshahi)
and 2 Indian States (Odisha andWest Bengal). The premise
of this method is to distribute country SSP population and
urbanization rates from the SSP Public Database (IIASA,
2018) onto the 3 arcsecond aggregated population grid
based on a 0.25◦ RCP-specific urban fraction grid and a
ranking of pixels into urban/rural based on distance to
roads and population centres of gravity. First, water bodies
were removed from theHRPDMpopulation data using the
G3WBM water mask (Yamazaki et al., 2015). Urban/rural
classification of the 3-s pixels was implemented by adding
rescaled inverse distance to roads and inverse distance to
population centre of gravity (COG) to the HRPDM data to
create a ‘unique population’ layer. Inverse distance to roads
is the Euclidean distance to roads on OpenStreetMap, and
the population COG is calculated using the COGravity
tool from the SDMTools package in R. The RCP urban
fraction data (version LUH2 v2f; Hurtt et al., 2020) pro-
vide the proportion of urban land at a 0.25◦ (∼25 km)
resolution between 2015 and 2100 for each RCP scenario
based on CMIP6, and is subsequently leveraged to clas-
sify urban/rural pixels. For each 0.25◦ urban fraction cell,
the 3-arcsecond pixels of the unique population layer (i.e.
HRPDM+inverse distance to COG+inverse distance to
roads) are ranked, with the highest value having the high-
est ranking. An urban mask is created by selecting the
highest percent of pixels that correspond to the urban frac-
tion in each 0.25◦ cell. Subsequently, the urban popula-
tion by Division/State per SSP is allocated to urban pixels,
while the rural population is distributed to rural pixels. The
country-level SSP population estimateswere disaggregated
to the Division/State level by weighting the proportion of
each Division/State population compared to the national
population based on themost recent census for both coun-
tries (2011 in both cases). Whilst this does not capture the
heterogeneity of population projections and urbanization
rates within countries, it does allow for population pro-
jections at the sub-national scale. SSP urbanization rates
were assumed to be identical across all states per coun-
try. Projected population gridding is calculated recursively
with the previous year’s population being used to create the
urban mask for the following year. To this end, we gener-
ate gridded projected population at 3 arcsecond resolution
(∼90 m) every year between 2018 and 2100 for the seven
administrative regions assessed in this study.
Flood exposure is then calculated by performing pixel-

wise raster multiplication using the population data and
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F IGURE 2 The centre of the storm track of super cyclone
Amphan over the Bay of Bengal, India (white) and Bangladesh
(grey). The maximum storm surge height above sea level at the
coast during the time of landfall is coloured according to the legend.
The storm location and timing are from the International Best Track
Archive for Climate Stewardship (IBTrACS). For the storm surge
height data, see Section 2

inundation maps converted to binary (where 1 = wet; 0 =
dry). We use three severity levels to generate the binary
inundations maps (low = >0.1 m; medium = >1 m; high
= >3 m) based on the flood water depth. Exposure raster
maps are subsequently produced at 3 arcsecond (∼90 m)
resolution. Lastly, exposure statistics per administrative
unit were performed using zonal statistics and administra-
tive units from GADM (GADM, 2020).

3 RESULTS

Super Cyclone Amphan made landfall on the India-
Bangladesh border on the 20th May 2020 (Figure 2). It
was the strongest cyclone in the region since 1999, with 1-
minute sustained wind speeds of up to 72 m/s at its peak
(category 5 on the Saffir-Simpson scale). However, a sig-
nificant wind deceleration to around 43 m/s (category 2)
was observed at the time of landfall. Even so, our mod-
elling indicates thatmost of the coastal regions of India and
Bangladesh experienced a storm surge of 2–4 m around
the time of landfall, which occurred during the ebb tide
period (see figure 5 in Khan et al., 2021), with storm surge
heights reaching up to 5m on parts of the River Ganges, for
example near Dhaka (Figure 2). Our modelling indicates
that this level of storm surge would lead to exposure of
around 737,000 people in Bangladesh and 420,000 in India

from the ensuing flood inundation (Figure 3). In the most
extreme populated regions, especially in Bangladesh, 2–2.5
m of flooding is estimated, bringing saline water to settle-
ments and agricultural land. Even with some larger urban
regions that are more inland, such as the administrative
region of Dhaka, flooding of >0.1 m exposed 1%–3% of the
population in some Districts (Figure 3b). Given the high
population density,we see exposures of up to 140,000 in the
Dhaka Division, rising higher in more coastal areas, such
as West Bengal, where ∼400,000 people were exposed.
Thehumanmortality estimates for the days surrounding

Cyclone Amphan landfall were considerably lower than
for other similarly intense cyclones in the region, rang-
ing between 100 and 200 deaths according to the situa-
tion reports (see Section 2) and local media broadcasts.
While the total attributable mortality is often found to be
higher when longer term effects are considered, such as
disease and infection from contaminated water, or specifi-
cally to Cyclone Amphan, the disruption due to the ongo-
ing COVID-19 pandemic protocols (Shultz et al., 2020),
the mortality will still likely be substantially lower rela-
tive to previous super cyclones in the region. This is likely
attributed in part to increased preparation time, with over
48 hours’ notice of the landfall site from five different fore-
casting systems which allowed for the evacuation of sev-
eral million people, in addition to well-developed human-
itarian response plans that have been established in recent
years. Examples of these include the Early Action Proto-
cols setup by NGOs such as Climate Central and the Ger-
man Red Cross, which have been adapted for Bangladesh
by the Needs Assessment Working Group (NAWG), a
Bangladeshi governmental body. Nevertheless, other soci-
etal damages from the cyclone were on par with, and in
many cases greater than, previous super cyclones in the
region, namely from commodities that are immovable. For
instance, in Bangladesh, according to data collected from
regional surveys (see Section 2), it is estimated that there
were hundreds of thousands of cattle lost, tens of thou-
sands of buildings destroyed, and ∼$20 million worth of
damage to fisheries alone, primarily from the storm surge.
During the month of May, fisheries are the primary source
of agricultural income for the region, and damages to other
agricultural sectors, such as rice paddies andmango crops,
totalled a factor of 4 smaller than that.

3.1 A changing earth system

With principal damage from intense cyclones predom-
inantly coming from the storm surge (Shultz et al.,
2005), we concentrate here on how this impact of the
cyclone would change under a range of future climate
scenarios associated with a range of carbon emissions,



MITCHELL et al. 9 of 16

F IGURE 3 Flood inundation and exposure maps of Super Cyclone Amphan landfall. Both maps show the Indo–Bangladesh border and
surrounding regions. Panel (a) shows the modelled storm surge flood depth in meters on the 20th May 2020. Inundation depth is particularly
hard to see on a map of this scale as it manifests much more locally, so a zoomed segment is also given as an example. Administrative regions
are named. Panel (b) shows the population exposed to flooding, as a percentage of the total regional population (pinks) and as absolute
numbers (red circles), defined as areas with a flood depth greater than 0.1 m on the 20th of May 2020. The size of the red circles is
proportional to the number of people exposed, as displayed in the figure key

thereby giving an assessment of future vulnerability in
this region. Specifically, we consider the change in future
SLR, as predicted by the Coupled Model Intercompar-
ison Project, phase 6 (CMIP6; Eyring et al., 2016). We
analyse three future scenarios spanning a low-emission
scenario (SSP1-RCP2.6), a business-as-usual scenario
(SSP2-RCP4.5), and a high-emission scenario (SSP5-
RCP8.5), (see Methods for further information). Climate

models run under the low-emission scenario indicate,
on average, a 2◦C global mean temperature increase by
2100 since pre-industrial (Figure 4a), defined as 1850–1900
(Allen et al., 2018). We therefore consider this as a proxy-
scenario for the upper goal of the Paris Agreement (Allen
et al., 2018), with the other scenarios reaching around
3◦C and 5◦C, therefore exceeding the Paris Agreement
goals.



10 of 16 MITCHELL et al.

F IGURE 4 Global mean temperature, and sea level rise projections in the Bay of Bengal. (a) Global mean surface temperature increase
for the decadal average of 2090–2100, compared with pre-industrial (1850–1900). Each coloured cross shows the first ensemble member of a
CMIP6 model (see Section 2). Black circles show the multi-model mean, and dashed lines show the Paris Agreement climate goals. (b)
Individual crosses show the area-averaged sea level height for the Bay of Bengal (10N–24N) for each of the individual models and ensemble
members used, in the month of May. Black circles show the lower quartile value for the blue crosses, mean value for the yellow crosses, and
upper quartile value for the red crosses. The values are anomalies between 2020 and 2100

Focussing now on how these temperature scenarios
relate to SLR, we consider the multi-model mean SLR pro-
jections from the business-as-usual scenario; the multi-
model lower quartile sea-level rise from the low-emission
scenario; and the multi-model upper quartile response
from the high-emission scenario, giving a range in sea level
responses over the region (Figure 4b). The results are tar-
geted for the month of May and only for the Bay of Bengal
(10–24N), and indicate that there will be 0.32, 0.50, or 0.84
m of SLR between the Cyclone Amphan event (2020), and
the end of the century (2100), for our low, medium, and
high scenarios, respectively.

3.2 Projected storm surge exposure

Given that the entire range in predicted SLR is positive,
we know, all other factors remaining constant, that the
exposure in South Asia from cyclone storm surges will
also increase. However, we must also consider future
population change: not only the projected increase in
population for India and Bangladesh, but also the migra-
tion of populations, which, for this region, manifests
as a significant shift from rural to urban settlements
(Figure S1). Under the SSP5 scenario, for example, the
percentage of the population living in urban areas is
projected to increase from ∼35% at present day to ∼90%
by 2100. Combining the SLR, storm surge modelling, and
changes in population (see Section 2), we see significant

increases in population exposure, especially in India
(Figure 5).
An informative way of interpreting the storm surge

exposure is by considering different severity levels of flood
depth, and it is common practice to consider low (>0.1 m),
medium (>1 m), and high (>3 m) flooding. There is a clear
positive increase in future exposure for all severity levels
under most future scenarios, except for the low-emission
scenario in Bangladesh (Figure 6). The reasons for this
decrease are discussed later. The largest increases in expo-
sure are estimated in India, with flooding increasing by
50%–90% even in the low-emission scenario, and reaching
over 200% in the high-emission scenario (Figure 5c). The
exposure changes in Bangladesh are considerably lower
for all flooding severity levels, in general showing no
change for the low-emission scenario, but ranging from
around 50% to 80% in the high-emission scenario, depend-
ing on the flood severity level. It should be noted, however,
that in terms of absolute numbers (rather than percent-
age change), Bangladesh sees a larger increase than India
(Figure S2).
To test whether the exposure response is dominated

by either climate change or population change, we also
include a fourth scenario, where we use the high-emission
projections but keep the population levels to those of 2020
(Figure 6d). We see that, for the least severe flooding
(greater than 0.1 m), the exposure in India is nearly all
from climate change, that is the yellow bars are of simi-
lar length in Figure 6c,d. For all other flood severity levels,
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F IGURE 5 Projections of the flood inundation and exposure for Super Cyclone Amphan under different climate scenarios. Panels (a–f)
are as in Figure 3, but for the three different sea level rise scenarios predicted for 2100. The blue and green colours now show the percentage
change in exposure from the 2020 baseline. Panel (g) shows the same as panel (f), but keeping the population at 2020 levels

in both countries, the population changes negatively con-
tribute to the overall exposure. The two primary reasons
for this are (1) that communities are estimated to migrate
from rural regions near the coast, to urban regions which
are generally on higher ground, and (2) because popula-
tion is projected to peak in 2050 in India and Bangladesh,
before declining by varying degrees depending on the sce-
nario used (see Figure S1).

3.3 Discussion of societal impacts
during Super Cyclone Amphan

Here, we have presented a physical mechanism for
changes in exposures for a future Amphan-scale storm
surge. But this is just one part of the physical and social
system of impacts during tropical cyclones, albeit the
most important for health (Shultz et al., 2005). A clear
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F IGURE 6 Projected changes in different levels of flood risk for India and Bangladesh. Bar charts of change in flood exposure for
(yellow) India and (purple) Bangladesh measured in percentage change between the future (2100) and baseline (2020). For each country, three
levels of flood severity are identified, corresponding to flood exposures of >0.1 m (low), >1 m (medium), and >3 m (high). The four panels
represent four different future combinations of emissions and population change. Panel (a) shows a low-emission scenario, consistent with
the upper Paris Agreement climate goal. Panels (b) and (c) show business-as-usual and high-emission scenarios, respectively. Panels (d) is the
same as (c), but with 2020 populations. A version of this figure showing absolute changes, rather than relative changes, is given in Figure S2

example of compounding crises during this event was
the interplay with the COVID-19 pandemic, where the
potential for exacerbated damages due to compounded
extreme climate is clear around the world (Phillips et al.,
2020). Cyclone Amphan is an extreme example of how
regional problems have been compounded by these two
crises (Shultz et al., 2020). At this point, it is impossible to
tell the attributable damage from Cyclone Amphan alone,
because long-term health and economic impacts are yet to
be realised, for example due to waterborne disease from
contaminated flood water (Sehgal et al., 2002; Fredrick
et al., 2015), dangerous heat exposure from the destruc-
tion of preventive coolingmeasures (Matthews et al., 2019),
or the impacts of soil salinization on crop yields (Chen &
Mueller, 2018). Yet, Cyclone Amphan has added complex-
ity compared to ‘typical’ tropical cyclones. Setting aside
the fact that it is harder to coordinate forecasting, emer-
gency planning, and humanitarian relief efforts because of
restrictions in place due to COVID-19, the lack of social dis-

tancing may well have prolonged viral transmission in the
region.
For instance, according to situation reports when the

cyclone hit (see Section 2), Bangladesh had around 4000
dedicated cyclone-resistant shelters, intended for evac-
uation of communities in particularly exposed regions.
Under normal circumstances, these shelters would suffice.
However, with social distancing restrictions in place due
to COVID-19 the government funded an additional 9000
make-shift shelters, mainly through conversion of educa-
tional institutes and other public buildings. Other preven-
tative measures were also put in place, such as providing
COVID-19 health kits (facemasks, soap, etc) to those in the
shelters. However, even with the rapid implementation of
these precautions, it may be that an increase in COVID-19
cases in the area occurs in theweeks following the cyclone.
As with any dangerous climate event, additional ongo-

ing emergencies, such as COVID-19, along with the
increased damages from the cyclone, put extra pressure



MITCHELL et al. 13 of 16

on infrastructure and resources, including, for example,
relief aid and engaging willing volunteers to help shore up
broken dams (Phillips et al., 2020). In the case of Super
Cyclone Amphan, some facilities, such as hospitals, were
not as overwhelmed as one might expect (see Section 2).
This was due to the cyclone hitting rural settlements,
where the hospitals did not have the equipment to treat
COVID-19 patients anyway, and so had referred patients to
larger urban hospitals further from the coastline.

4 CONCLUSIONS AND FUTURE
OUTLOOK

Despite being one of the world’s most vulnerable regions
to cyclone hazards (e.g. Nicholls et al., 2008; Dasgupta
et al., 2011), countries surrounding the Bay of Bengal
have received far less research attention than in many
other cyclone-prone areas (Knutson et al., 2010; Emanuel,
2017; Risser & Wehner, 2017; Van Oldenborgh et al., 2017).
This shortcoming must be addressed because countries of
the region urgently need information on where best to
enhance short-term emergency response plans, and where
to focus longer term infrastructure resilience investment.
For example, due to the lack of maintenance and funding,
riverbank erosion, subsidence, and constant exposure to
cyclones in recent years,many stretches of flood protection
have failed around Bangladesh.
Here, we have set up a framework for assessing dam-

ages in terms of future population exposures to one of
the most hazardous components of a cyclone, the storm
surge. We consider how many additional people would be
exposed to different levels of flooding, given a regional SLR
ranging from 0.32 to 0.84 m, and specifically relate this to
the Super Cyclone Amphan event, thereby addressing the
question: ‘If an Amphan-scale storm surge occurred under
a world with increased sea levels, how might the popula-
tion exposed change?’
Our key conclusions are that in high- and medium-

emission scenarios, more than 200% people could be
exposed to the most severe flooding in India, although
the exposure increase is only between 0% and 20% in
Bangladesh. For lower flood severity levels, between 160%
and 280% more exposure is estimated in India, and 70%–
90% in Bangladesh. Most of this change in exposure for
both countries comes from increased SLR, rather than
changes in population densities. If we consider a low-
emission scenario consistent with the 2◦C Paris Agree-
ment climate goal, we see similar levels of exposure to
the present day in Bangladesh, and significantly smaller
increases in Indian exposure levels than estimated for the
mid- and high-emission scenarios. While this result pro-
vides some very strongmotivation tomeet the Paris Agree-

ment climate goal, it must also be interpreted in the wider
context of other cyclone-coincident hazards, for instance
the occurrence of deadly heat following cyclone landfalls
in South Asia is likely to increase by as much as 70% under
a 2◦C target (Matthews et al., 2019).
There are several caveats to our analysis. As with any

climate event, Cyclone Amphan will, strictly speaking,
remain a unique event in Earth’s history. However, it is
likely that cyclones with similar relevant features, or even
more extreme features, will occur in the future. There-
fore, conceptually it does make sense to think of how a
“component” of that event might have impacted society
differently, given some change in the background Earth
system, an approach often used in the insurance industry
and referred to as ‘realistic disaster scenarios’. Our exam-
ple therefore considers how a storm surge of 2–4 m, sit-
ting on top of varying degrees of SLR, might impact dif-
ferent parts of South Asia. We also choose not to simulate
any future upgrade of flood defences in our hydrological
analysis, meaning that our future Super Cyclone Amphan
exposure estimates will be an overprediction if such invest-
ments are in fact made. Again, conceptually this makes
sense from an attribution point of view, as we are keen
to understand the climate and population drivers, with-
out confusing the picture regarding changing coastal pro-
tection measures. The largest uncertainty in our analysis
comes from the uncertainties in our Digital ElevationMap
(see Section 2.3), which is not as accurate as in countries
that have LIDAR-derived elevationmaps, and so decreases
the confidence in our results. It is hard to validate the
subsequent flood inundation because like-for-like observa-
tional comparisons do not exist, and to some extent the
modelling provides our best guess at what actually hap-
pened. Given this, and considering the extreme nature of
hydrometeorological hazards in Bangladesh, it is impor-
tant to use these maps accepting the reduced confidence,
rather than avoid the problem altogether (Kulp & Strauss,
2019).
Our work here highlights the particular vulnerabilities

that India and Bangladesh will face for cyclone hazards in
the future, and provides a compelling argument for world
governments to limit carbon emissions to be consistent
with the Paris Agreement climate goals (Mitchell et al.,
2016). On a regional level, planning and communication
of disaster risk reduction is key, and was likely a major sav-
ing grace for CycloneAmphan. In the past, there have been
examples of conflicting communities in Bangladesh who,
when properly incentivized, work together to overcome
coastal flooding hazards (Sultana & Thompson, 2017). It is
initiatives like these that need to be at the forefront of the
Bangladeshi and Indian government mitigation strategies,
possibly championed by the Loss and Damage initiatives
(Huq et al., 2013; James et al., 2014), and with contingency
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plans in place to deal with these particularly extreme com-
pounded events.
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