951 research outputs found

    Quality of life and surgical outcome of ABBA versus EndoCATS endoscopic thyroid surgery: a single center experience

    Get PDF
    BACKGROUND Thyroid surgery is often performed, especially in young female patients. As patient satisfaction become more and more important, different extra-cervical \textquotedblremote\textquotedbl approaches have evolved to avoid visible scars in the neck for better cosmetic outcome. The most common remote approaches are the transaxillary and retroauricular. Aim of this work is to compare Endoscopic Cephalic Access Thyroid Surgery (EndoCATS) and axillo-bilateral-breast approach (ABBA) to standard open procedures regarding perioperative outcome and in addition to control cohorts regarding quality of life (QoL) and patient satisfaction. METHODS In a single center, 59 EndoCATS und 52 ABBA procedures were included out of a 2 years period and compared to 225 open procedures using propensity-score matching. For the endoscopic procedures, cosmetic outcome, patient satisfaction and QoL (SF-12 questionnaire) were examined in prospective follow-up. For QoL a German standard cohort and non-surgically patients with thyroid disease were used as controls. RESULT The overall perioperative outcome was similar for all endoscopic compared to open thyroid surgeries. Surgical time was longer for endoscopic procedures. There were no cases of permanent hypoparathyroidism and no significant differences regarding temporary or permanent recurrent laryngeal nerve (RLN) palsies between open and ABBA or EndoCATS procedures (χ2; p = 0.893 and 0.840). For ABBA and EndoCATS, 89.6% and 94.2% of patients were satisfied with the surgical procedure. Regarding QoL, there was an overall significant difference in distribution for physical, but not for mental health between groups (p < 0.001 and 0.658). Both endoscopic groups performed slightly worse regarding physical health, but without significant difference between the individual groups in post hoc multiple comparison. CONCLUSION Endoscopic thyroid surgery is safe with comparable perioperative outcome in experienced high-volume centers. Patient satisfaction and cosmetic results are excellent; QoL is impaired in surgical patients, as they perform slightly worse compared to German standard cohort and non-surgical patients

    Oral antibiotic bowel decontamination in open and laparoscopic sigmoid resections for diverticular disease

    Get PDF
    PURPOSE There is an ongoing debate on whether or not to use oral antibiotic bowel decontamination in colorectal surgery, despite the numerous different regimens in terms of antibiotic substances and duration of application. As we routinely use oral antibiotic bowel decontamination (selective decontamination of the digestive tract (SDD) regimen and SDD regimen plus vancomycin since 2016) in surgery for diverticular disease, our aim was to retrospectively analyze the perioperative outcome in two independent centers. METHODS Data from two centers with a routine use of oral antibiotic bowel decontamination for up to 20 years of experience were analyzed for the perioperative outcome of 384 patients undergoing surgery for diverticular disease. RESULTS Overall morbidity was 12.8%, overall mortality was 0.3%, the overall rate of anastomotic leakage (AL) was 1.0%, and surgical site infections (SSIs) were 5.5% and 7.8% of all infectious complications including urinary tract infections and pneumonia. No serious adverse events were related to use of oral antibiotic bowel decontamination. Most of the patients (93.8%) completed the perioperative regimen. Additional use of vancomycin to the SDD regimen did not show a further reduction of infectious complications, including SSI and AL. CONCLUSION Oral antibiotic decontamination appears to be safe and effective with low rates of AL and infectious complications in surgery for diverticular disease

    Carcinoembryonic Antigen Gene Family

    Get PDF
    The carcinoembryonic antigen (CEA) gene family belongs to the immunoglobulin supergene family and can be divided into two main subgroups based on sequence comparisons. In humans it is clustered on the long arm of chromosome 19 and consists of approximately 20 genes. The CEA subgroup genes code for CEA and its classical crossreacting antigens, which are mainly membrane-bound, whereas the other subgroup genes encode the pregnancy-specific glycoproteins (PSG), which are secreted. Splice variants of individual genes and differential post-translational modifications of the resulting proteins, e.g., by glycosylation, indicate a high complexity in the number of putative CEA-related molecules. So far, only a limited number of CEA-related antigens in humans have been unequivocally assigned to a specific gene. Rodent CEA-related genes reveal a high sequence divergence and, in part, a completely different domain organization than the human CEA gene family, making it difficult to determine individual gene counterparts. However, rodent CEA-related genes can be assigned to human subgroups based on similarity of expression patterns, which is characteristic for the subgroups. Various functions have been determined for members of the CEA subgroup in vitro, including cell adhesion, bacterial binding, an accessory role for collagen binding or ecto-ATPases activity. Based on all that is known so far on its biology, the clinical outlook for the CEA family has been reassessed

    HE-LHC: The High-Energy Large Hadron Collider: Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC-ee: The Lepton Collider – Future Circular Collider Conceptual Design Report Volume 2

    Get PDF

    Measurement of the tt¯tt¯ production cross section in pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    A measurement of four-top-quark production using proton-proton collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS detector at the Large Hadron Collider corresponding to an integrated luminosity of 139 fb−1 is presented. Events are selected if they contain a single lepton (electron or muon) or an opposite-sign lepton pair, in association with multiple jets. The events are categorised according to the number of jets and how likely these are to contain b-hadrons. A multivariate technique is then used to discriminate between signal and background events. The measured four-top-quark production cross section is found to be 26+17−15 fb, with a corresponding observed (expected) significance of 1.9 (1.0) standard deviations over the background-only hypothesis. The result is combined with the previous measurement performed by the ATLAS Collaboration in the multilepton final state. The combined four-top-quark production cross section is measured to be 24+7−6 fb, with a corresponding observed (expected) signal significance of 4.7 (2.6) standard deviations over the background-only predictions. It is consistent within 2.0 standard deviations with the Standard Model expectation of 12.0 ± 2.4 fb

    HE-LHC: The High-Energy Large Hadron Collider – Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics

    FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100&nbsp;km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100&nbsp;TeV. Its unprecedented centre of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries
    • 

    corecore