10 research outputs found

    Quantifying Earth system interactions for sustainable food production via expert elicitation

    Get PDF
    Several safe boundaries of critical Earth system processes have already been crossed due to human perturbations; not accounting for their interactions may further narrow the safe operating space for humanity. Using expert knowledge elicitation, we explored interactions among seven variables representing Earth system processes relevant to food production, identifying many interactions little explored in Earth system literature. We found that green water and land system change affect other Earth system processes strongly, while land, freshwater and ocean components of biosphere integrity are the most impacted by other Earth system processes, most notably blue water and biogeochemical flows. We also mapped a complex network of mechanisms mediating these interactions and created a future research prioritization scheme based on interaction strengths and existing knowledge gaps. Our study improves the understanding of Earth system interactions, with sustainability implications including improved Earth system modelling and more explicit biophysical limits for future food production

    An annotated checklist of the Branchiopoda (Crustacea) of the Dutch Caribbean islands

    No full text
    The launch of the Dutch Caribbean Species Register by Naturalis Biodiversity Center (2017)—https://www. dutchcaribbeanspecies.org/—raised the question of which branchiopods originate from this part of the Netherlands. To answer this question, surveys of literature and of the Naturalis collection were conducted. The additional samples (collected in 2003–2005 and 2008) were analyzed. We present an annotated checklist of the Branchiopoda of the Dutch Caribbean. The Kingdom of the Netherlands includes the Dutch mainland and six Caribbean islands. From the Caribbean part of the kingdom, an annotated list of all known species is given. Fifteen taxa and three genera have been encountered and the species are discussed. To date, six species of large branchiopods and nine species of cladocerans are known. Two more genera of cladocerans have been found. One species is endemic to Bonaire.</p

    Plant dispersal in a lowland stream in relation to occurrence and three specific life-history traits of the species in the species pool

    No full text
    1 The diversity and abundance of viable diaspores trapped at the downstream end of a 15-km lowland stream were quantified and related to five potentially predicting variables: species' occurrence in the species pool, distance to the nearest stand and the life-history traits seed buoyancy, seed production and plant height. 2 From 126 samples, 106 614 individuals of vascular plants developed, 95.8% from vegetative diaspores and 4.2% from seeds. Among these plants, three free-floating, 12 submerged, 22 emergent ( aquatic) and 70 riparian (semi-aquatic and terrestrial) species were recorded, respectively, accounting for 24.3%, 71.9%, 1.2% and 2.6% of the total number of viable diaspores trapped. 3 Of the free-floating, submerged and emergent species, 100%, 98.9% and 23.7% of the diaspores were vegetative, respectively, whereas it was 2.9% for riparian species. 4 Diaspores of 79% of the total number of aquatic species and 40% of riparian species observed in the established vegetation were trapped. Minimal dispersal distances ranged from 0 to 6 km. 5 Multiple regression analysis conducted for submerged species, showed that 71% of the variation in the diaspore pool could be predicted by occurrence of species in the vegetation. For emergent species, seed production and occurrence of species explained 54% of the variation, seed production being most important. Mean seed buoyancy of emergent species was higher than that of the other groups. For riparian species, seed production, occurrence and buoyancy explained 48% of the variation in the diaspore pool. Seed production per plant was the most important variable. Linear regression revealed a negative relationship between distance and abundance of the diaspore pool for submerged and riparian species. 6 We conclude that the occurrence of species in the species pool is a significant predictor for the dispersal of free-floating and submerged aquatics that rely on vegetative propagation. Seed production and buoyancy are of additional importance with regard to emergent aquatics. Riparian species with a limited terrestrial dispersal capacity may largely extend their range by hydrochory. That is, if they produce large amounts of ( small) seeds and provided that these can reach the water body. Buoyancy and high frequency and abundance in the established vegetation promote this dispersal capacity as well

    Quantifying Earth system interactions for sustainable food production via expert elicitation

    Get PDF
    Several safe boundaries of critical Earth system processes have already been crossed due to human perturbations; not accounting for their interactions may further narrow the safe operating space for humanity. Using expert knowledge elicitation, we explored interactions among seven variables representing Earth system processes relevant to food production, identifying many interactions little explored in Earth system literature. We found that green water and land system change affect other Earth system processes strongly, while land, freshwater and ocean components of biosphere integrity are the most impacted by other Earth system processes, most notably blue water and biogeochemical flows. We also mapped a complex network of mechanisms mediating these interactions and created a future research prioritization scheme based on interaction strengths and existing knowledge gaps. Our study improves the understanding of Earth system interactions, with sustainability implications including improved Earth system modelling and more explicit biophysical limits for future food production

    [In Press] Areas of global importance for conserving terrestrial biodiversity, carbon and water

    Get PDF
    To meet the ambitious objectives of biodiversity and climate conventions, the international community requires clarity on how these objectives can be operationalized spatially and how multiple targets can be pursued concurrently. To support goal setting and the implementation of international strategies and action plans, spatial guidance is needed to identify which land areas have the potential to generate the greatest synergies between conserving biodiversity and nature’s contributions to people. Here we present results from a joint optimization that minimizes the number of threatened species, maximizes carbon retention and water quality regulation, and ranks terrestrial conservation priorities globally. We found that selecting the top-ranked 30% and 50% of terrestrial land area would conserve respectively 60.7% and 85.3% of the estimated total carbon stock and 66% and 89.8% of all clean water, in addition to meeting conservation targets for 57.9% and 79% of all species considered. Our data and prioritization further suggest that adequately conserving all species considered (vertebrates and plants) would require giving conservation attention to ~70% of the terrestrial land surface. If priority was given to biodiversity only, managing 30% of optimally located land area for conservation may be sufficient to meet conservation targets for 81.3% of the terrestrial plant and vertebrate species considered. Our results provide a global assessment of where land could be optimally managed for conservation. We discuss how such a spatial prioritization framework can support the implementation of the biodiversity and climate conventions

    Osteoporosis: Pathophysiology, prevention, diagnosis, and treatment

    No full text
    corecore