11 research outputs found
Sphingosine kinase 1 regulates inflammation and contributes to acute lung injury in pneumococcal pneumonia via the sphingosine-1-phosphate receptor 2
Objectives: Severe pneumonia may evoke acute lung injury, and sphingosine-1-phosphate is involved in the regulation of vascular permeability and immune responses. However, the role of sphingosine-1-phosphate and the sphingosine-1-phosphate producing sphingosine kinase 1 in pneumonia remains elusive. We examined the role of the sphingosine-1-phosphate system in regulating pulmonary vascular barrier function in bacterial pneumonia. Design: Controlled, in vitro, ex vivo, and in vivo laboratory study. Subjects: Female wild-type and SphK1-deficient mice, 8-10 weeks old. Human postmortem lung tissue, human blood-derived macrophages, and pulmonary microvascular endothelial cells. Interventions: Wild-type and SphK1-deficient mice were infected with Streptococcus pneumoniae. Pulmonary sphingosine-1-phosphate levels, messenger RNA expression, and permeability as well as lung morphology were analyzed. Human blood-derived macrophages and human pulmonary microvascular endothelial cells were infected with S. pneumoniae. Transcellular electrical resistance of human pulmonary microvascular endothelial cell monolayers was examined. Further, permeability of murine isolated perfused lungs was determined following exposition to sphingosine-1-phosphate and pneumolysin. Measurements and Main Results: Following S. pneumoniae infection, murine pulmonary sphingosine-1-phosphate levels and sphingosine kinase 1 and sphingosine-1-phosphate receptor 2 expression were increased. Pneumonia-induced lung hyperpermeability was reduced in SphK1(-/-) mice compared with wild-type mice. Expression of sphingosine kinase 1 in macrophages recruited to inflamed lung areas in pneumonia was observed in murine and human lungs. S. pneumoniae induced the sphingosine kinase 1/sphingosine-1-phosphate system in blood-derived macrophages and enhanced sphingosine-1-phosphate receptor 2 expression in human pulmonary microvascular endothelial cell in vitro. In isolated mouse lungs, pneumolysin-induced hyperpermeability was dose dependently and synergistically increased by sphingosine-1-phosphate. This sphingosine-1-phosphate-induced increase was reduced by inhibition of sphingosine-1-phosphate receptor 2 or its downstream effector Rho-kinase. Conclusions: Our data suggest that targeting the sphingosine kinase 1-/sphingosine-1-phosphate-/sphingosine-1-phosphate receptor 2-signaling pathway in the lung may provide a novel therapeutic perspective in pneumococcal pneumonia for prevention of acute lung injury
Pre-GMBI-v2
The General Music Branding Inventory (GMBI) is a new psychometric instrument for assessing the music-induced association of attributes, which are frequently and reliably used in the field of music branding. The pre-GMBI version 2 consists of 36 attributes which have been used for music perception ratings during the second large scale online listening experiment in ABC_DJ. The aim of ABC_DJ project (http://abcdj.eu/) is to predict brand attributes and emotional expressions (such as ârebelliousâ, âreliableâ, âsentimentalâ or âconfidentâ) based on a variety of lower and higher order acoustic features from musical content.EC/H2020/688122/EU/Artist-to-Business-to-Business-to-Consumer Audio Branding System/ABC D
Music Branding Expert Terminology
The Music Branding Expert Terminology (MBET) is a comprehensive terminology of verbal attributes used in music branding. It consists of 132 terms grouped into 19 dimensions. The MBET is a preliminary result of the project ABC_DJ (http://abcdj.eu/). The aim of ABC_DJ is to predict brand attributes and emotional expressions (such as ârebelliousâ, âreliableâ, âsentimentalâ or âconfidentâ) based on a variety of lower and higher order acoustic features from musical content.EC/H2020/688122/EU/Artist-to-Business-to-Business-to-Consumer Audio Branding System/ABC D
Circulating Cancer Associated Macrophage-like Cells as a Potential New Prognostic Marker in Pancreatic Ductal Adenocarcinoma
Background: Circulating Cancer Associated Macrophage-like cells (CAMLs) have been described as novel liquid biopsy analytes and unfavorable prognostic markers in some tumor entities, with scarce data for Pancreatic Ductal Adenocarcinomas (PDAC). Methods: Baseline and follow-up blood was drawn from resected curative (n = 36) and palliative (n = 19) PDAC patients. A microfluidic size-based cell enrichment approach (ParsortixTM) was used for CAML detection, followed by immunofluorescence staining using pan-keratin, CD14, and CD45 antibodies to differentiate between CAMLs, circulating tumor cells (CTCs), and leukocytes. Results: CAMLs were detectable at baseline in 36.1% of resected patients and 47.4% of palliative PDAC patients. CAML detection was tumor stage independent. Follow-up data indicated that detection of CAMLs (in 45.5% of curative patients) was an independent prognostic factor for shorter recurrence-free survival (RFS) (HR: 4.3, p = 0.023). Furthermore, a combined analysis with CTCs showed the detectability of at least one of these cell populations in 68.2% of resected patients at follow-up. The combined detection of CAMLs and CTCs was also significantly associated with short RFS (HR: 8.7, p = 0.003). Conclusions: This pilot study shows that detection of CAMLs in PDAC patients can provide prognostic information, either alone or even more pronounced in combination with CTCs, which indicates the power of liquid biopsy marker analyses