1,629 research outputs found

    Information Driven Self-Organization of Agents and Agent Collectives

    Get PDF
    From a visual standpoint it is often easy to point out whether a system is considered to be self-organizing or not, though a quantitative approach would be more helpful. Information theory, as introduced by Shannon, provides the right tools not only quantify self-organization, but also to investigate it in relation to the information processing performed by individual agents within a collective. This thesis sets out to introduce methods to quantify spatial self-organization in collective systems in the continuous domain as a means to investigate morphogenetic processes. In biology, morphogenesis denotes the development of shapes and form, for example embryos, organs or limbs. Here, I will introduce methods to quantitatively investigate shape formation in stochastic particle systems. In living organisms, self-organization, like the development of an embryo, is a guided process, predetermined by the genetic code, but executed in an autonomous decentralized fashion. Information is processed by the individual agents (e.g. cells) engaged in this process. Hence, information theory can be deployed to study such processes and connect self-organization and information processing. The existing concepts of observer based self-organization and relevant information will be used to devise a framework for the investigation of guided spatial self-organization. Furthermore, local information transfer plays an important role for processes of self-organization. In this context, the concept of synergy has been getting a lot attention lately. Synergy is a formalization of the idea that for some systems the whole is more than the sum of its parts and it is assumed that it plays an important role in self-organization, learning and decision making processes. In this thesis, a novel measure of synergy will be introduced, that addresses some of the theoretical problems that earlier approaches posed

    Self-organizing particle systems

    Get PDF
    This is a pre-copyedited, author-produced PDF of an article accepted for publication in Advances in Complex Systems following peer review. The version of record, Malte Harder and Daniel Polani, ‘Self-organizing particle systems’, Advs. Complex Syst. 16, 1250089, published October 22, 2012, is available online via doi: https://doi.org/10.1142/S0219525912500890 Published by World Scientific Publishing.The self-organization of cells into a living organism is a very intricate process. Under the surface of orchestrating regulatory networks there are physical processes which make the information processing possible, that is required to organize such a multitude of individual entities. We use a quantitative information theoretic approach to assess self-organization of a collective system. In particular, we consider an interacting particle system, that roughly mimics biological cells by exhibiting differential adhesion behavior. Employing techniques related to shape analysis, we show that these systems in most cases exhibit self-organization. Moreover, we consider spatial constraints of interactions, and additionaly show that particle systems can self-organize without the emergence of pattern-like structures. However, we will see that regular pattern-like structures help to overcome limitations of self-organization that are imposed by the spatial structure of interactions.Peer reviewe

    A Bivariate Measure of Redundant Information

    Get PDF
    We define a measure of redundant information based on projections in the space of probability distributions. Redundant information between random variables is information that is shared between those variables. But in contrast to mutual information, redundant information denotes information that is shared about the outcome of a third variable. Formalizing this concept, and being able to measure it, is required for the non-negative decomposition of mutual information into redundant and synergistic information. Previous attempts to formalize redundant or synergistic information struggle to capture some desired properties. We introduce a new formalism for redundant information and prove that it satisfies all the properties necessary outlined in earlier work, as well as an additional criterion that we propose to be necessary to capture redundancy. We also demonstrate the behaviour of this new measure for several examples, compare it to previous measures and apply it to the decomposition of transfer entropy.Comment: 16 pages, 15 figures, 1 table, added citation to Griffith et al 2012, Maurer et al 199

    Effect of isolated intracranial hypertension on cerebral perfusion within the phase of primary disturbances after subarachnoid hemorrhage in rats

    Get PDF
    IntroductionElevated intracranial pressure (ICP) and blood components are the main trigger factors starting the complex pathophysiological cascade following subarachnoid hemorrhage (SAH). It is not clear whether they independently contribute to tissue damage or whether their impact cannot be differentiated from each other. We here aimed to establish a rat intracranial hypertension model that allows distinguishing the effects of these two factors and investigating the relationship between elevated ICP and hypoperfusion very early after SAH.MethodsBlood or four different types of fluids [gelofusine, silicone oil, artificial cerebrospinal fluid (aCSF), aCSF plus xanthan (CX)] were injected into the cisterna magna in anesthetized rats, respectively. Arterial blood pressure, ICP and cerebral blood flow (CBF) were continuously measured up to 6 h after injection. Enzyme-linked immunosorbent assays were performed to measure the pro-inflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) in brain cortex and peripheral blood.ResultsSilicone oil injection caused deaths of almost all animals. Compared to blood, gelofusine resulted in lower peak ICP and lower plateau phase. Artificial CSF reached a comparable ICP peak value but failed to reach the ICP plateau of blood injection. Injection of CX with comparable viscosity as blood reproduced the ICP course of the blood injection group. Compared with the CBF course after blood injection, CX induced a comparable early global ischemia within the first minutes which was followed by a prompt return to baseline level with no further hypoperfusion despite an equal ICP course. The inflammatory response within the tissue did not differ between blood or blood-substitute injection. The systemic inflammation was significantly more pronounced in the CX injection group compared with the other fluids including blood.DiscussionBy cisterna magna injection of blood substitution fluids, we established a subarachnoid space occupying rat model that exactly mimicked the course of ICP in the first 6 h following blood injection. Fluids lacking blood components did not induce the typical prolonged hypoperfusion occurring after blood-injection in this very early phase. Our study strongly suggests that blood components rather than elevated ICP play an important role for early hypoperfusion events in SAH

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Impacts of the Tropical Pacific/Indian Oceans on the Seasonal Cycle of the West African Monsoon

    Get PDF
    The current consensus is that drought has developed in the Sahel during the second half of the twentieth century as a result of remote effects of oceanic anomalies amplified by local land–atmosphere interactions. This paper focuses on the impacts of oceanic anomalies upon West African climate and specifically aims to identify those from SST anomalies in the Pacific/Indian Oceans during spring and summer seasons, when they were significant. Idealized sensitivity experiments are performed with four atmospheric general circulation models (AGCMs). The prescribed SST patterns used in the AGCMs are based on the leading mode of covariability between SST anomalies over the Pacific/Indian Oceans and summer rainfall over West Africa. The results show that such oceanic anomalies in the Pacific/Indian Ocean lead to a northward shift of an anomalous dry belt from the Gulf of Guinea to the Sahel as the season advances. In the Sahel, the magnitude of rainfall anomalies is comparable to that obtained by other authors using SST anomalies confined to the proximity of the Atlantic Ocean. The mechanism connecting the Pacific/Indian SST anomalies with West African rainfall has a strong seasonal cycle. In spring (May and June), anomalous subsidence develops over both the Maritime Continent and the equatorial Atlantic in response to the enhanced equatorial heating. Precipitation increases over continental West Africa in association with stronger zonal convergence of moisture. In addition, precipitation decreases over the Gulf of Guinea. During the monsoon peak (July and August), the SST anomalies move westward over the equatorial Pacific and the two regions where subsidence occurred earlier in the seasons merge over West Africa. The monsoon weakens and rainfall decreases over the Sahel, especially in August.Peer reviewe

    Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks

    Get PDF
    A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons (H) in proton-proton collisions collected by the CMS experiment at the LHC at root s = 8 TeV. The data correspond to an integrated luminosity of 19.7 fb(-1). The search considers HH resonances with masses between 1 and 3 TeV, having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and t (t) over bar events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95 confidence level for the product of the production cross section and branching fraction sigma(gg -> X) B(X -> HH -> b (b) over barb (b) over bar) range from 10 to 1.5 fb for the mass of X from 1.15 to 2.0 TeV, significantly extending previous searches. For a warped extra dimension theory with amass scale Lambda(R) = 1 TeV, the data exclude radion scalar masses between 1.15 and 1.55 TeV

    Measurement of the Splitting Function in &ITpp &ITand Pb-Pb Collisions at root&ITsNN&IT=5.02 TeV

    Get PDF
    Data from heavy ion collisions suggest that the evolution of a parton shower is modified by interactions with the color charges in the dense partonic medium created in these collisions, but it is not known where in the shower evolution the modifications occur. The momentum ratio of the two leading partons, resolved as subjets, provides information about the parton shower evolution. This substructure observable, known as the splitting function, reflects the process of a parton splitting into two other partons and has been measured for jets with transverse momentum between 140 and 500 GeV, in pp and PbPb collisions at a center-of-mass energy of 5.02 TeV per nucleon pair. In central PbPb collisions, the splitting function indicates a more unbalanced momentum ratio, compared to peripheral PbPb and pp collisions.. The measurements are compared to various predictions from event generators and analytical calculations.Peer reviewe
    corecore