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Abstract

The self-organization of cells into a living organism is a very intricate
process. Under the surface of orchestrating regulatory networks there are
physical processes which make the information processing possible, that
is required to organize such a multitude of individual entities. We use
a quantitative information theoretic approach to assess self-organization
of a collective system. In particular we consider an interacting parti-
cle system, that roughly mimics biological cells by exhibiting differential
adhesion behavior. Employing techniques related to shape analysis, we
show that these systems in most cases exhibit self-organization. More-
over, we consider spatial constraints of interactions, and additionaly show
that particle systems can self-organize without the emergence of pattern-
like structures. However, we will see that regular pattern-like structures
help to overcome limitations of self-organization that are imposed by the
spatial structure of interactions.

Keywords: Self-organization; information theory; morphogenesis.

1 Introduction

The development of organisms is one of the most prominent examples of self-
organization and the emergence of shapes. The process of forming shapes is usu-
ally an interplay between environmental dynamics (e.g. global physical rules),
and agent actuations (e.g. a change of local properties) regulated through com-
plex networks.

In the early stage of laying out body plans, morphological changes are in-
duced mainly due to control of cell adhesion, cell motility and oriented cell
division. In particular, differential cell adhesion prevents areas consisting of
different tissues to mix and starts an automatic sorting process. This happens,
if for example cells have been forced to mix in a solution [47]. Gastrulation, the
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process of rearranging a ball of cells in the early stage of embryonic development
into a more complex body structure, can be simulated by contractions in cell
shape that then lead to an automatic rearrangement of cells forming an inner
structure [26].

One important aspect of all these processes is that, in many cases, the infor-
mation processing capabilities of the individual cells (i.e. agents) are severely
limited, especially in scenarios that consider large collectives. In these cases the
environmental dynamics dominate the process of organization while individual
agents actively guide the process. Cells for example can change adhesion prop-
erties or partially contract. Morphogenesis, the formation of shapes, as we will
see, can be achieved purely by environmental dynamics up to certain limits.
The process of shape formation can be seen as a selection of a configuration
which fulfills certain properties. Thus, the course of a given process typically
leads to a reduction of entropy. In the context of this paper, we would like to
reinterpret this as saying that there are information processing capabilities in
the environment. This is justified by the view of the controlled dynamics of a
system as an entropy reduction mechanism [43], more below.

Note that these capabilities are often rooted in the structure of the space
and the physical laws that govern it. In [31] it has been shown that consistency
in the embodiment of agents reduces cognitive load, lack of such consistency
increases it. This implies that, consistency or homogeneity of the space also
can increase the information processing capabilities of the environment, as a
reduction of cognitive load means that the information needs to be processed
elsewhere. Information processing/entropy reduction capabilities that a system
provides can also be used by non-reactive systems (for example, we consider
particles here instead of autonomous agents). In particular they can be a driving
force of self-organization.

1.1 Self-organizing particle systems

In order to investigate the information processing capabilities of a morpho-
genetic process, we will use a model of particle collectives similar to the models
in [10, 11, 35] that mimics features of cell adhesion and cell motility to a certain
grade. A human observer easily detects organizational patterns in simulation
runs of this model. In many cases the resulting particle configurations even re-
semble the morphology of biological structures, showing features that look like
membranes or nuclei, see Fig. 1 for an example. However, a human observer
is a quite subjective measure and not transferable. The question is: Is there
an objective way to characterize whether a formation of particles is a result of
mere chance, some driving force or is it due to the underlying dynamics that
did let the system self-organize? Using quantitative methods it is possible to
investigate such a formation process in greater detail. In particular information
theory will serve us as a useful tool as it offers a universal and model agnostic
way to investigate self-organization in arbitrary dynamical systems.

In self-organizing processes, individual parts of the whole system usually
interact with each other, this is the case in particular in the particle model
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considered here. Interactions have been the basis for information theoretic in-
vestigations before [19], and can be closely linked to information storage and
transfer [44, 24, 5]. A requirement that organization can occur is the spread
of information through the system, which in turn requires interaction between
individual parts of the system [40].

2 Information Theory

Our studies will be based on information theory [38]. For self-containedness, we
introduce here the basic notions of information theory, for a detailed account
see Thomas and Cover [6]. A fundamental measure in information theory is the
entropy of a probability distribution, measured in bits. It is defined by

H(X) := −
∑
x∈X

p(x) log2 p(x) (1)

where X denotes a finite-valued random variable with values in X and p(x) the
probability that X takes on the value x ∈ X . Entropy measures the uncertainty
of the outcome of a random variable. Now mutual information is defined by
I(X;Y ) := H(X) + H(Y ) − H(X,Y ). It is symmetric in X and Y and can
be interpreted as the information the random variables mutually encode about
each other. For continuous random variables, differential entropy is defined as

h(X) :=

∫
X
p(x) log2 p(x)dx. (2)

Differential entropy differs in important aspects from its discrete counterpart
and is, strictly spoken, not a true, but rather a “renormalized” entropy [16].
The analogous concept of differential mutual information, however as differ-
ence of entropies I(X;Y ) := h(X) + h(Y ) − h(X,Y ), still retains its character
as a mutual information and discrete variables can be seamlessly replaced by
continuous ones in the case of the latter.

2.1 Multi-information

Multi-information, also called total correlation [17] or integration [42], is one
generalization of mutual information to the multivariate case. It is defined as

I(X1, ..., Xn) :=

n∑
i=1

H(Xi)−H(X1, ..., Xn) (3)

where the sum goes over the entropies of the marginal variables. The continuous
case is defined analogously. Multi-information measures the statistical depen-
dence between the individual parts of the whole system. Multi-information has
been used as a complexity measure [1] and incorporates the idea that changes
in one part of the system are reflected in the overall state.
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There are several other multivariate generalizations of mutual information
which all retain certain properties of the bivariate case. For a thorough dis-
cussion of most of these measures, especially in the context of analyzing time
series, see [17]. Here we will use multi-information to measure the amount of
self-organization that is present in the system.

3 Quantifying Self-Organization

Although it is quite easy for humans, from a visual standpoint, to point out
whether we consider a system as self-organizing (“I know it when I see it”),
there are surprisingly few quantitative characterizations of self-organization.
Let us assume we observe some pattern that seems to self-organize over time,
but we only see a single instance of this time series. Our intuition about self-
organization implicitly assumes that there is a causal relation between the ob-
served time-steps. However, this could be the improbable but possible observa-
tion of a time series of i.i.d random variables. In this case we do not want to
quantify the system as self-organizing. By choosing a statistical or information
theoretic formulation of self-organization we are able to account for this causal
relationship.

Let us first consider what self-organization is not. Most importantly, there
should not be an external or central force that controls the process in a “top-
down” fashion. Also, if there is a system that is causally dependent [28, 2]
on another self-organizing system, we do not want to consider the former as
self-organizing. This means that the system should be autonomous, which is
not a trivial task to determine [3], and external influences need to be separable,
which can be investigated using the measure of causal information flow [2].
However, we will not consider these problems here, they are more apparent if
the underlying model is unknown. Here, the model is designed to fulfill these
criteria.

This still leaves the question of how to quantify organization. Organization
means an increase of structure over time, whereby structure in this context
usually is considered to be a spatial correlation between parts of the whole
system. One account for a definition of self-organization can be found in [37],
where self-organization is defined as the increase of statistical complexity of
a system over time via ε-machines. Measuring self-organization via statistical
complexity has the limitation and advantage that it assumes no structure on the
space underlying the time-series. It is an advantage because the measure is very
versatile and does not need to be changed for different spatial structures. On
the other hand its a limitation, because the spatial structure will be implicitly
encoded in the states of the ε-machine, which makes it less accessible for further
analysis [37]. There is an extension of ε-machines called spatial ε-machines which
have a structural assumption about the space they are defined on, but this has
only been done for discrete spaces so far. Thus, we will describe a method
which has been suggested as alternative to the measure of self-organization via
statistical complexity (see [30] for a detailed survey on the foundation of self-
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organization).

3.1 Self-organization via observers

We define self-organization as an increase of multi-information between observer
variables I(X1, ..., Xn) during the run of the process [29]. A collection of ran-
dom variables X1, ..., Xn are called observers of a system X if the system is fully
determined by the collection of random variables, that means H(X|X1, ..., Xn)
vanishes, and all variables only depend on X, meaning H(X1, ..., Xn|X) vanishes
as well. The observers impose a “coordinate system” on the observed random
variable and can be chosen freely. The additional specification is not very prob-
lematic in practice, as there are often natural choices for observer variables, as
many systems are just a collection of individual random variables.

For a completely random process this measure never detects any self-organization,
as there is no increase in correlation between observer variables. Note that there
could be correlation between observers because they observe the same part of
X, but because they exclusively depend on X, there is no hidden common cause
between observers that could increase the correlation. The other extreme case
is that the entropy of the whole system vanishes, in which case there also can-
not be an increase of multi-information between the observers. So, to achieve
self-organization, the system requires some remaining, degree of freedom.

Interestingly, this definition also gives the opportunity to build hierarchies by
considering coarse to fine grained observers, which then leads to a decomposition
of self-organization. If k-observers are grouped to one coarse-grained observer
variable X̃i we get that the following multi-information term

I(X1, ..., Xi1︸ ︷︷ ︸
X̃1

, Xi1+1, ..., Xi2︸ ︷︷ ︸
X̃2

, ..., Xik−1+1, ..., Xik︸ ︷︷ ︸
X̃k

) (4)

can be decomposed into k+1 multi-information terms (see [30] for a derivation)

= I(X̃1, ..., X̃k) +

k∑
j=1

I(Xij−1
, ..., Xij ). (5)

The decomposition now allows the separation of organization that is apparent
within individual parts of the system, where each part is a coarse-grained ob-
server, and organization, that can only be explained as an interaction between
coarse-grained observers.

This allows us to see whether there are parts of the system that dominate
the process of self-organization. For example by grouping individual observers
by common properties of the observed variables, it is possible to see whether a
specific property has a higher contribution to the self-organization or whether
most of the self-organization is a result of interaction between different coarse-
grained observers. We will now use this formulation of self-organization to
investigate spatial self-organization in particle collectives.
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4 Particle collectives & self-organisation

4.1 The Particle Model

There are numerous models of morphogenesis and pattern formation including
reaction-diffusion models [25], cellular automata [46], diffussion-limited aggre-
gation [45], L-systems [33] and agent based models [4]. The particle model we
will describe is based on the model by [10, 11], and shares some similarities
with the Swarm Chemistry model [35]. It mimics the way biological cells stick
together by cell adhesion, allowing different types to recognize each other.

In our model, each particle interacts with all particles within a certain cut-
off radius rc. For reasons of simplicity, as well as to be able to have long
range interactions, we ignore a cell-like tessellation (as opposed to [10]), where
interactions can only take place between direct neighbors of the tessellation.
The equation of motion for each particle is given by

żi =
∑

j∈Nrc (i)

−Fαβ(‖∆zij‖2)∆zij + w (6)

where ∆zij = zi− zj , Nrc(i) denotes the set of indices of particles within radius
rc of particle i and Fαβ is a force-scaling function, α the type of particle i, β
the type of particle j and w an additive white Gaussian noise term, where w ∼
N (0, 0.05) throughout all experiments. Note that the velocity is proportional
to the force applied and thus the dynamics are studied in the strong limit of
friction. This assumption holds for example for the motion of insects and cellular
motility, in contrast to the movement of larger animals and humans which can
build up momentum.

Now, the equation of motion can be solved using Euler-Maruyama integra-
tion [20, 32]. We used the following two force-scaling functions, see Fig. 2 for a
plot of both functions.

F 1
αβ(x) = kαβ

(
1− rαβ

x

)
(7)

and

F 2
αβ(x) = kαβ

(
1

σ2
αβ

e
− x2

2σαβ − e−
x2

2ταβ

)
. (8)

The matrices kαβ , rαβ as well as σαβ and ταβ define the interactions between the
particles and have a strong impact on the dynamics of the experiment. Values
for the parameters were chosen from the following ranges: kαβ ∈ [1.0, 10.0],
rαβ ∈ [0.0, 1.0] and ταβ ∈ [1.0, 10.0] with σαβ = 1 throughout all experiments.
Note that choosing a non-symmetric matrix often leads to unstable dynamics
or cycling patterns as the preferred distance is mutually different, we therefore
only consider symmetric matrices in what follows. The force-scaling function
defines how much attraction or repulsion the particles show among each other
depending on the type and distance between particles. The first force-scaling
function F 1 shows stronger attraction compared to repulsion than F 2. For
each type, the force-scaling functions result in a preferred distance of particles
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of other types, denoted rαβ . By using smaller diagonal values than the off-
diagonal elements in kαβ or rαβ it is possible to force clustering of particles of
the same type.

In Fig. 3 are three examples of equilibrium states of particle collectives. For
the particle collective with only one type, a simple disc shaped pattern can be
seen. The collective is considered to be in equilibrium, if for several time steps
the sum of the L2 norm of the sum of all forces acting on each particle is below
a specific threshold.

4.2 Measuring organization in particle collectives

To measure self-organization within a particle collective using multi-information
as introduced in Sec. 3.1 we need to define observer variables. A natural choice
would simply be the collection of variables denoting the positions of each indi-
vidual particle. However, we have to consider that certain transformations of
the configuration leave the shape of the particle collective invariant. So, if we
do not consider these invariants, the measured multi-information can be differ-
ent from what we do want to consider as organization towards a shape. But
even if, in the stochastic limit, rotations and translations are equidistributed,
by factoring them out we reduce the sparsity of samples in the space of possible
configuration of particles.

There are several accounts on spatial statistics and stochastics [36, 23], how-
ever in these references interacting particle systems are defined as (continuous
time) Markov processes on discrete domains while our experiments are in the
continuous domain. In the area of geo-information systems and medical image
processing, there is a large interest in statistical models of shapes, and there is a
large body of literature on shape models [9, 39, 12]. One particular problem, the
alignment of overlapping images or shapes, is similar to the problem of reducing
our experiment samples (i.e. the simulations) to an invariant representation.

Rotation, translation as well as permutation of particles of the same type
leave the observable shape, as well as the dynamics involved, invariant. Let
ISO+(2) denote the group of direct isometries (rotation, translation and iden-
tity) of the euclidean plane. This group now acts on the space of particle
configurations Z by rigid body motions:

Z × ISO+(2)→ Z. (9)

To account for permutations, let Sn denote the permutation group of n-
elements, which also naturally acts on the space of samples by permuting the
particle vectors for all time steps. Now we consider the subgroup S∗n ⊂ Sn that
permutes only particles of the same type. The direct product F = ISO+(2)×S∗n
now classifies all shape invariant transformations.

It is important to note that these transformation also have to property that
they leave the dynamics of the system invariant. Let z(t) ∈ Z denote the
configuration of the particle collective at time t, then

p(z(t)|z(t−1)) = p(fz(t)|fz(t−1)) for all f ∈ F and all z(t), z(t−1). (10)
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This means that a configuration that is transformed will lead to a distribution
of configurations in the future, that is equivalent to the distribution of the
transformed future states of the original configuration.

In the case that additionally the initial state is invariant under the action of
this transformation group, we also have p(z(t)) = p(fz(t)) for all t. Thus we can
easily factor out the transformation group, and get random variables over the
space of shapes (transformation invariant particle configurations). Factoring
out all symmetries F from Z then leads to a reduced space of particle config-
urations W which then allows us to define a random variable W(t) (the whole

collective at time t) and corresponding observer variables W
(t)
1 , ...,W

(t)
n for a

collective with n particles. The indistinguishableness of particles of the same

type means that no observer W
(t)
i can be used to make predictions about the

future of a specific particle. Measuring multi-information on these derived ran-

dom variables W
(t)
1 , ...,W

(t)
n ignores certain degrees of freedom, i.e., rotation,

permutations of particles of the same type and translation. Now we can express
every configuration of particles z as a permutation, translation and rotation
of invariant coordinates w, i.e. for all z there exists w and f ∈ F such that
z = fw. Due to the group structure of F and the invariance of the states (at
all times) under transformations of F we have

I(Z1, ...,Zn) =

∫
Z
p(z1, ..., zn) log

p(z1, ..., zn)

p(z1) · · · p(zn)
dz (11)

=

∫
F

∫
W
p(f(w1, ...,wn)) log

p(f(w1, ...,wn))

p(fw1) · · · p(fwn)
dwdf (12)

=

∫
F

∫
W
p(w1, ...,wn) log

p(w1, ...,wn)

p(w1) · · · p(wn)
dwdf (13)

= I(W1, ...,Wn). (14)

Therefore, factoring out the transformation group F does not change the
multi-information of the observers, in the case of an invariant system. However,
that means that in practice we would have to sample the initial state with full
support on R2 which would lead to a very sparse sampling and because of the
finite cut-off radius to almost no interactions between particles. To avoid this,
we use an initial distribution of particles, which is uniform within a certain
radius around the origin, so that particles are initially placed uniformly on a
centered disc. This initial distribution is still invariant with respect to rotation
and permutation, but not translation invariant. Even though the equality from
above thus does not hold anymore, we argue, that due to the symmetry of
the forces (rαβ ,kαβ , σαβ , ταβ are symmetric in all cases) and the independence
of the noise, there is no information coming from translation in the original
coordinates z(t) that is relevant for the organization of the collective, so that we
can simply consider the factored coordinates w(t) to measure multi-information
and successively self-organization.
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4.2.1 Indistinguishable particles

If we make predictive statements about a particle we need to be able to identify
particles through time, otherwise the statistics about the future of a particular
particle are skewed. That the interchangeability of variables has an impact on
information processing and measurements has been considered before in terms of
recoding equivalence [7]. By reordering the particles, we lose the information to
identify the same particle over time and they become indistinguishable. To mea-
sure self-organization of shapes we actually want indistinguishable particles (if
they have the same type) and therefore we introduced the permutation group S∗n
as one set of shape invariant transformations. Distinguishing them would mean
that there can be an event that increases the measurement of self-organization,
but is not reflected in the shape and structure of the particle configuration. For
example there could be a permutation of two particles of the same type that is
always reflected by a permutation of two particles of same type elsewhere in the
system. This would then be taken into account by the multi-information, but
has no impact on the shape that is formed.

On the other hand we also do not want to equate particles which have a dif-
ferent type, and show different interactions. Particles of different types should
be distinguishable as permutations of particles of different type actually change
the shape of the configuration. Additionally, if they would be indistinguish-
able this would contradict the assumption made in (10) that the dynamics are
invariant to permutations of indistinguishable particles.

The problem of indistinguishable particles and the related change of entropy
is also a problem in thermodynamics where it is known as Gibbs phenomenon
and Mixing paradox [13, 18]. By only making a distinction between particles
that show observably different behavior we are in line with the solution to this
problem in physics [18].

5 Methods

This section describes how we derive estimates of multi-information from simu-
lation samples of particle dynamics. The reader not interested in the computa-
tional details may skip this section to Sec. 6 without loss of understanding.

5.1 Particle and sample space

Each simulation runs with a fixed number of n particles, l different types and
each particle gets a fixed type assigned at the start of the simulation. The
particles are located in the infinite two-dimensional plane R2 and are initialized
with a uniform distribution on a disc of fixed radius. Each particle is of a specific
type. The types can vary between different experiments, but the properties (rαβ ,
etc.) of each type are fixed for all simulation samples of one experiment. The
assignment of a type to a particle is fixed over the time of the simulation run.
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Each simulation run is a sample and is denoted by

z̄ = (z(1), ..., z(tmax)) (15)

where each time step is a vector of particle coordinates

z(t) = (z
(t)
1 , ..., z(t)n ). (16)

To gather statistics for an experiment, we need to run the simulation multiple
times. The collection of all m samples is denoted

z = (z̄1, ..., z̄m)> = (z(1), ..., z(tmax)). (17)

Now, let the space of all particle vectors z = (z1, ..., zn) be denoted Z and Z(t)

the random variable over Z at time step t, so all z(t) ∈ z(t) are samples of Z(t).

5.2 Factoring out symmetries

Now we factor out the symmetries for each time step as introduced in Sec. 4.2.
The samples z(t) ∈ z(t) for each time step t, the raw output of the simulations,
are still with respect to a common coordinate system. We will now proceed
to factor out translations, rotations and permutations resulting in processed
samples w(t) ∈ w(t) for each time step t. In practice this is done by expressing
all particle configuration samples z(t) ∈ z(t) with respect to its centroid. This
is followed by aligning all configuration samples z(t) for each time step using
an ICP (Iterative Closest Point) algorithm [48, 34]. For the application of
the alignment the particle configuration is transferred to a three dimensional
representation where the third coordinate of each particle is represented by its
type, where the type coordinates are scaled by a factor a magnitude larger
than the diameter of the collective. Thus the alignment respects the type of
the particles. After the alignment the coordinates of all particle are reordered
by types and correspondences. Correspondences between particles of different
samples, but of the same type, are found using a nearest neighbor search within
the ICP algorithm (implementation from the point cloud library [34]). This
means that particles close to each other in different samples at the same time are
considered to represent the same particle. Note that the notion of same particle
establishes a correspondence between different samples at a specific time step.
The correspondence between particles of the same sample, but different time
steps is, however, lost in this process.

Equipped with this preprocessing, we reach an isometry- and permutation-
reduced representation of the particle collective in terms of processed samples
w(t) ∈ w(t). We can now use the statistics of these samples to calculate the

multi-information I(W
(t)
1 , ...,W

(t)
n ).

The invariant representation also has the advantage that the samples are
much denser in the space of possible configurations which improves the qual-
ity of the estimates. It is important to note, that for statistics that need to
track particles over time, we cannot use the permutation reduced representa-
tion because we would then lose any correspondence of particles over time, e.g.
[21].
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5.3 Estimation of multi-information

To estimate the multi-information we used the Kraskov-Stögbauer-Grassberger
Estimator [22]. The estimate is based on a k-nearest-neighbor search. We chose
k = 5 for all experiments. The estimate is not very sensitive for changes of k
and we get similar results with k = 2 or k = 10. If k is chosen too large the
resulting estimate vanishes for almost all samples. The estimator for m samples
and n variables is given by

I(W
(t)
1 , ...,W(t)

n ) , ψ(k) + (n−1)ψ(m)−〈ψ(c1) +ψ(c2) + ...+ψ(cn)〉w(t) (18)

where ψ is the digamma function and the brackets denote the average taken over
all samples. The ci are dependent of w(t) and defined as follows: let Nk(w(t))
denote the k-th neighbor of the sample w(t) using the following metric

‖w′ −w‖ := max
i∈{1,...,n}

‖w′i −wi‖2 (19)

then ci is defined as

ci =
∣∣∣{w′(t) ∈ w(t) : ‖w′(t)i −w

(t)
i ‖2 < ‖Nk(w(t))i −w

(t)
i ‖2

}∣∣∣− 1. (20)

The idea is that a high correlation between the variables leads on average to a
low count of samples per variable that, for each sample, are closer to the sample
itself than the k-th neighbor over all variables, thus maximizing the estimator.

In our tests this approximation shows less variance and is much faster to
calculate than other methods. This holds especially in the higher dimensional
setting with more than ten particles (20 dimensional) and only few samples
(500 to 1000). We compared the method to a kernel based approach which was
multiple orders of magnitudes slower and showed a larger variance in higher
dimensions [41]. We also compared it to a shrinkage type binning estimator
[15], which overestimated the multi-information in higher dimension due to the
sparse sampling, so much that almost no change in information could be seen.

5.3.1 A further approximation

For large collectives, the alignment of samples and the estimation of the multi-
information can still be a computationally expensive task. Therefore, we can
reduce the dimensionality of the problem by introducing mean random variables.
We perform a k-means clustering on the particles of each type and thus recover

l · k mean variables Ŵ
(t)
1 , ...,Ŵ

(t)
lk , where l is the number of types. Now we

use I(Ŵ
(t)
1 , ...,Ŵ

(t)
lk ) as an approximation measure for the multi-information

I(W
(t)
1 , ...,W

(t)
n ).

This must be done carefully, because the clustering process itself can intro-
duce structure into the collective of particles, and thus can lead to a higher
measurement of multi-information than actually is present. On the other hand,
the clustering ignores all small scale self-organization processes, and hence the
measured multi-information is less than the exact value.
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6 Results

In the following sections all experiments were run with a sample size of m = 500
to m = 1000, tmax = 100 to tmax = 250 and k = 4 for the knn-selection of the
multi-information estimator. For systems with more than 60 particles the k-
means clustering approximation was used to reduce the number of dimensions.
The first observation is that this method can be used in practice to detect self-
organization and there is a visual correlation between the formation process
and the increase of the multi-information estimate as depicted in Fig. 4. In

the beginning the sum of the marginal entropies H(W
(t)
i ) is as large as the

overall entropy of the system because there is no correlation between particles
at all. Over time, the marginal entropies decrease, however the overall entropy
decreases even faster as the variations of individual particles are correlated.
This then leads to an increase of multi-information over time. In Fig. 6 we see
snapshots of different samples of one specific experiment run. The final shapes
show a certain variety, and there are two visually distinguishable categories of
shapes. One has a triangular cluster of dark particles in the center whereas the
other one has a cluster of light and outlined particles, where the light particles
are sandwiched between the outlined particles. So even though there are several
final states, they can be grouped into several shapes with specific distinctive
visual features.

If the types are restricted to a single type, which means each particle interacts
with each other in the same way, the resulting equilibrium configuration is
always a regular grid for force-scaling function F 2 (see rightmost panel in Fig. 3),
and the self-organization is very low. This is due to two effects: Firstly, the
regular grid is also always in the form of a disc, there is no variety in shapes,
so the entropy for each particle is already very low in general (after alignment),
and secondly, small perturbations in the grid structure are local and do not
spread through the grid.

Interestingly, this is not always the case when we used the force-scaling
function F (1) which show a different behavior. For example, if the cut-off radius
rc is larger than 2rαα (we consider only one type) and there are 20 particles, then
the particles configure into two concentric regular polygons where the rotation of
the inner polygon with regard to the outer polygon shows one degree of freedom
(see Fig. 7). This already leads to a relatively high amount (compared to all
other experiments we analyzed) of self-organization with just one type, as shown
in Fig. 5. This already foreshadows the insight from Sec. 6.1 that the amount
of self-organization a system can exhibit depends strongly on how individual
particles interact with each other. In the next section we will explore this
relationship in terms of interaction radius, number of types and self-organization
in greater detail.

It can be seen in Fig. 5 that the multi-information is still increasing at time
step 250, even though a visual inspection of the simulation samples shows that
there is hardly any movement except a slight expansion of the configuration. We
constrained our simulations in general to 250 time steps because of the limitation
of computational capacity. In most of our experiments the equilibrium was
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attained well before the maximum of 250 time steps was reached. When this was
not the case the system was either still slowly expanding, but already formed
most of its final shape, or it reached a limit cycle with a periodic dynamic.
In the case of the periodic limit cycle, the multi-information entered a plateau
before the maximum of 250 steps was reached, however, the equilibrium stopping
criterion which requires nearly vanishing forces for several time steps was not
fulfilled at any time.

6.1 Comparison of interaction types

Simulations with l = 3 to 5 types and n = 20 to 120 particles almost always
show quantifiable self-organization reflected in multi-information (see Fig. 4 for
a typical example). Observing an increase in multi-information is independent
of the employed force-scaling function, and only vanishes in cases where the
interactions between the different types are very similar (however as mentioned
earlier, this is not a sufficient condition). Initially we hypothesized that increas-
ing the number of types above a certain ratio of distinct types to particles will
generally lead to a decrease of self-organization. It can be seen in Fig. 8 that
there is a decrease in self-organization with increasing number of types (for a
fixed number of particles), when F (2)-scaling is used with randomly generated
type matrices. However, the assumption does not hold for F (1) scaling.

In Fig. 9 it can be seen that with increasing cut-off radius rc, the self-
organization increases even in the case where there are the same number of
types as there are particles l = m. This result seems counter intuitive at first:
the resulting particle configurations look arbitrary and unstructured, though
the multi-information is increasing over time. But note: we have to consider
that spatial regularities are not a necessary condition for self-organization, but
that the mutual interactions define possible attractors to which the particles
then organize. Because of the large number of different types compared to
particles the structure is not (and cannot expected to be) regular. On the
other hand, if the interactions are locally limited, either because of a small
cut-off radius or because of a decreasing force-scaling function like F (2), the
self-organization is limited as well (Fig. 9, rc ≤ 7.5). If we compare this to the
self-organization exhibited by systems with the same amount of particles, same
local limitations on interactions, but considerably fewer different types, we can
make the following observation: The increase of multi-information over time
in these systems is much higher than in those being local and having as many
types as particles (see Fig. 10).

An increase of multi-information can either be reached by the decrease of the
overall entropy of the system, the increase of the marginal observer entropies
or a mixture of both. In the case of a decrease of overall entropy and constant
observer entropies, the system looks the same for each observer and it is quite
clear that the correlation between the particles must have increased. In the
opposite case, the degree of freedom each observer sees is increased while the
overall entropy of the system stays constant, therefore there must exist some
correlation between the particles that removes the individual degrees of freedom
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when looking at the system as a whole.
To reach an increase in correlation (i.e. multi-information) among the parti-

cles information needs to spread through the collective [40]. And hence, it is not
surprising that long-range interactions lead to a lot of self-organization. What
is, however, quite interesting is, that this is also possible if the interactions are
local but limited in variety. In these cases, where interactions are local, there
are almost always smaller clusters interacting with each other. Each cluster
shows a very regular structure and consists of particles of one type. We will
further discuss this observation in Sec. 7.2.

6.1.1 Localization of organization

If we have a cluster structure with spatially confined subsystems, there is a nat-
ural question: Is it possible to locate where the largest contribution to the or-
ganization is made? In Sec. 3.1, we showed that it is possible to decompose the
multi-information of the observer variables into the several multi-information
terms, that each measure the multi-information of a subset of the observer vari-
ables, and one term that measures the multi-information between these coarse-
grained joint observer variables. We now consider the joint random variable of
all observers of each type of particles as coarse-grained observers W̃1, ...,W̃l

(see Sec. 3.1), and calculate the multi-information individually. The results
using this decomposition do not draw a clear picture: A general observation
is that in every experiment we were able see organization on all levels. If we
normalize the decomposition with respect to the total multi-information for
each time step, it can be seen that in the beginning of the experiment that the
relative contribution of each decomposition term still varies, while after a few
steps the relative contribution values will settle, even though the whole multi-
information is still increasing and the system is still organizing (see Fig. 11).
However, there is no common pattern in the decomposition that we were able to
relate to the dynamics of the system. Almost all experiments show this pattern
of an early phase where the decomposition varies by large amounts, and then
a phase where the decomposition settles down. But, at this stage we were not
able to link the dominance of a specific type or the inter-type multi-information,
to specific observable behaviors.

7 Discussion

We used multi-information as a measure for self-organization and applied it to
experiments of interacting particle systems. Estimations of multi-information
were obtained using the Kraskov-Stögbauer-Grassberger estimator [22]. The
approach seems to be in general transferable to other discrete-time dynamical
systems that share the same invariants (or the same method can be adapted to
other invariant transformations).

As mentioned earlier, defining a measure for self-organization is not a straight-
forward task. With our definition one has to be careful in the choice of the ob-
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server variables. However, the results show that particle/type-based observers
are a practicable approach to measure self-organization in spatial systems. This
measure also has the advantage that we do not need to assume stationarity of
the system we investigate.

Regarding the specific model we chose, a core observation is that the choice
of the force-scaling function, and therefore the form of interaction between
particles, has a strong influence on the resulting dynamics. We have studied
particular aspects of collective organization; the lessons drawn from may have
implications for the understanding of biological collective self-organization in
space.

7.1 Uniform collectives

Our first observation was, that a uniform collective (only one type) when form-
ing regular grids only shows a small amount of measurable self-organization.
Recalling that the particles are initially uniformly distributed in a disc of cer-
tain radius, and then form an almost unique equilibrium configuration, we see
that the measured self-organization is in agreement with the statistical complex-
ity notion of self-organization. The time-dependent statistical complexity [8] of
the initial state vanishes as it is completely random, but also once the system
reaches the equilibrium state there was no spatial or temporal variance, and so
the statistical complexity vanishes as well. On the other hand, the process from
randomly distributed states to a regular grid structure is similar to crystals or
paracrystallines which often are considered as self-organized [14]. So, it could
be that there is a small increase in multi-information in the beginning that then
should vanish again, when the system settled on the equilibrium state. How-
ever, we were not able to show an early increase of multi-information with the
estimator. It is possible that the amount of early self-organization is smaller
than the bias of the estimator.

These discussions lead to an interesting related question. Suppose we observe
two processes Xt, Yt, both starting with a uniform distribution over all states,
going into a phase of self-organization where the multi-information of some
observer variables increases. But then, the first process Xt goes back to a
uniform distribution, whereas Yt cools down to a deterministic periodic process.
In both cases there is no difference between the multi-information at the initial-
state as well as the multi-information after the organization phase. Though
there are qualitative differences in the process and we would consider Xt as
temporarily organized while Yt should be considered as self-organized even after
the cooling down phase. Therefore it is helpful to look at the evolution of entropy
over time as well, which helps here to distinguish both cases, even though it does
not serve as a measure for self-organization in itself.

7.2 Long range interactions

Our main observation of the self-organization of particle systems concerned
the variation of the cut-off radius rc and the number of types in the particles.
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Here we were able to see that given unconstrained interactions (rc = ∞) the
self-organization can be very high even if the particles all have distinct types
with different mutual interactions. This was surprising insofar that the particle
configuration in these settings do not show much spatial structure, and there
is generally no emergent description in terms of clusters interacting with each
other. However, the configurations show a lot of statistical structure, i.e. cor-
relations, that the multi-information is able to detect. This can be related to
the retrieval of spatial configuration of sensors using information-distance [27].
The distances are in this case represented by the rαβ radii and the experiment
with rc = ∞ is equivalent to the relaxation procedure that was used in [27]
for the reconstruction of spatial structure. Another interesting point here is,
that self-organization can occur without exhibiting a visually emergent spatial
structure, this could support the idea put forward in [37] that self-organization
and emergence are separate concepts.

Now, decreasing the cut-off radius rc also decreases the observable self-
organization if the number of types is held constant. This supports another
assumption about self-organization: Information spread through the system is
a crucial property of self-organizing systems. By limiting the cut-off radius, we
are constraining the particles ability to transfer information through the system
and therefore its ability to organize.

Surprisingly however, if the number of types is decreased (with fixed small
value of rc), the self-organization increases and we can observe emergent struc-
tures like balls enclosed in circles, layers of different types (see Fig. 12). It seems
that the common co-occurence of self-organization and emergence of clustered
structures is a result of the way a system can achieve higher overall complexity
when interactions are locally constrained. Even with limited rc, the homogene-
ity of the space as well as the homogeneity of local structures allow long-range
structural interactions between groups of particles, which in turn allows to pro-
duce to a higher amount of self-organization of the whole system.

7.3 Future work

The methods developed in [24] promise to furnish tools to investigate the infor-
mation dynamics between individual particles over time. We tried to measure
the information transfer between particles, but so far the results are still incon-
clusive and this is part of ongoing research.

Our investigations showed the multi-information is decomposed without
clear preference in the initial phase, but settle to a fixed amount of contri-
bution to the total amount of multi-information. So it is already possible to
distinguish qualitatively different phases of the self-organization process. Hav-
ing a measure like the interaction measure devised by [19], it might be possible
to use a continuous version of this measure to investigate the interaction dy-
namics and autonomy of sub-processes in the particle collectives, relate it to the
amount of self-organization that is exhibited, and such get even more insight to
process of self-organization.

So far we only considered systems where particles have fixed dynamics. The
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system simply self-organizes according to fixed “physics”. Already with this, we
can reach quite a variation of patterns and configurations by merely changing
the parameters of the dynamics. However these changes, if seen in the context
of biological systems, will be limited by evolutionary speed and quite inflexi-
ble. If we want to get systems exhibiting higher complexity there needs to be
some “informed” local guidance, either through external top-down intervention
in the organization process, or by considering reactive agents instead of parti-
cles that just follow rules. As part of the rich toolbox of information-theoretic
concepts, the present methods plug in immediately into the existing arsenal
of information-theoretic tools to model agents in their environment and this
scenario opens many doors for further investigations of guided self organization.
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Figure 1: Example of a particle configuration.
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attraction of F (1) is only cut off by the radius rc.
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Figure 3: Examples of equilibrium states of particle collectives with different number of types.
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Figure 6: Snapshots of different samples of the experiment shown in Fig. 4 at t = 60 (left)
and t = 250 (right).
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Figure 7: Plot of all particles of all samples at time t = 250 using force-scaling function F (1),
20 particles of one type per sample. It can be seen that the outer ring has been much better
aligned so that for each particle samples match more closely (denser clusters), while this is
not possible for the inner ring of particles as their alignment related to the outer ring is a
degree of freedom.
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Figure 8: Increase of multi-information between t = 0 and t = 250 using force-scaling function
F (2), for different numbers of types. Average over 10 randomly generated types with mutual
preferred distance radii rαβ between 1.0 and 5.0.
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Figure 9: Multi-information plotted against time using force-scaling function F (1), 20 parti-
cles, 20 types, averaged over 10 samples of random types where rαβ ∈ [2.0, 8.0], kαβ = 1 for
different cut-off radii rc: 2.5, 5.0, 7.5, 10.0, 15.0, ∞.
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Figure 10: Multi-information of 20 particles plotted against time using force-scaling function
F (1), averaged over 10 samples of random types where rαβ ∈ [2.0, 8.0], kαβ = 1 for different
cut-off radii rc and different number of types: l = 20, rc = 10, l = 20, rc = 15,

l = 20, rc = ∞, l = 5, rc = 10, l = 5, rc = 15, l = 5, rc = ∞.
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Figure 11: Contribution of the different terms of the decomposition normalized with the multi-
information in each time-step ( is a normalized plot of the multi-information between
all particles). I(W̃1, ...,W̃l), multi-information between all particles of type 1,

type 2, type 3, type 4, type 5. This is a decomposition of one of the
sampled types with l = 5, rc = 15 from Fig. 10.
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Figure 12: Examples of emergent structures in particle collectives.
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