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Abstract. Nitrous oxide (N2O) is an important and strong greenhouse gas in the atmosphere and part of a feed-back loop

with climate. N2O is produced by microbes during nitrification and denitrification in terrestrial and aquatic ecosystems. The

main sinks for N2O are turnover by denitrification and photolysis and photo-oxidation in the stratosphere. The position of

the isotope 15N in the linear N=N=O molecule can be distinguished between the central or terminal position (isotopomers of

N2O). It has been demonstrated that nitrifying and denitrifying microbes have a different relative preference for the terminal5

and central position. Therefore, measurements of the site preference in N2O can be used to determine the source of N2O i.e.

nitrification or denitrification. Recent instrument development allows for continuous (on the order of days) position dependent

δ15N measurements at N2O concentrations relevant for studies of atmospheric chemistry. We present results from continuous

incubation experiments with denitrifying bacteria, Pseudomonas fluorescens (producing and reducing N2O) and Pseudomonas

chlororaphis (only producing N2O). The continuous position dependent measurements reveal the transient pattern (KNO3 to10

N2O and N2, respectively), which can be compared to previous reported site preference (SP) values. We find bulk isotope

effects of -5.5 ‰ ± 0.9 for P. chlororaphis. For P. fluorescens, the bulk isotope effect during production of N2O is -50.4 ‰ ±
9.3 and 8.5 ‰ ± 3.7 during N2O reduction. The values for P. fluorescens are in line with earlier findings, whereas the values

for P. chlororaphis are larger than previously published δ15Nbulk measurements from production. The calculations of the SP

isotope effect from the measurements of P. chlororaphis result in values of -6.6 ‰ ± 1.8. For P. fluorescens, the calculations15

results in SP values of -5.7 ‰ ± 5.6 during production of N2O and 2.3 ‰ ± 3.2 during reduction of N2O. In summary, we

implemented continuous measurements of N2O isotopomers during incubation of denitrifying bacteria and believe that similar

experiments will lead to a better understanding of denitrifying bacteria and N2O turnover in soils and sediments and ultimately

hands-on knowledge on the biotic mechanisms behind greenhouse gas exchange of the Globe.
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1 Introduction

The atmospheric concentration of nitrous oxide (N2O) has increased from approximately 271 ppb before the industrialization

to 324 ppb in 2011 [(Ciais et al., 2013)]. This increase has resulted in (1) an enhanced radiative forcing, e.g. N2O has the third5

highest contribution to the radiative forcing of the naturally occurring greenhouse gasses [(Hartmann et al., 2013)], and (2) an

increased production of nitrogen oxides (NOx) in the stratosphere and thereby an increased ozone-depletion. [(Forster et al.,

2007); (Kim and Craig, 1993)]

Ice core records show that concentrations of N2O correlates with northern hemispheric temperature variations, e.g. during the

last glacial-interglacial termination as well as over the rapid climate variations occurring during the glacial period, known as10

Dansgaard-Oeschger events (D-O events). However, occasionally (e.g. D-O event 15 and 17) the N2O concentration increases

long before the onset of the dramatic temperature change Schilt et al. (2010), providing a potential early warning for rapid

climate change. Isotopomers of N2O provide information on the sources [(Clark, 1999)] and may improve our understanding

on why N2O is leading over some rapid climate change events. The stable isotopes of nitrogen are 14N and 15N with average

isotopic abundances (mole-fraction) in the atmosphere of 0.99634 and 0.00366, respectively [(Junk and Svec, 1958)].15

The N2O molecule has an asymmetric linear structure (N=N=O) where the position of the 15N can be discriminated. The

isotopomers are named 15Nα and 15Nβ or short α and β for 14N15N16O and 15N14N16O, respectively [(Yoshida and Toyoda,

2000)]. The two isotopomers cannot be distinguished directly by isotope ratio spectrometry, as they have the same mass. How-

ever, a distinction is possible using mid-infrared spectroscopy because the rotational and vibrational conditions are different

for the two isotopomers providing regions where absorptions of the two isotopomers do not overlap. For isotopomer measure-20

ments at low N2O concentration (low ppm range), a joint instrument development was executed, applying cavity ring down

spectroscopy (CRDS) to enable continuous measurements (on the order of days) of the isotopomer abundances and yielding

values for 15Nα and 15Nβ .

For isotopomers, the isotopic composition is reported as delta values; the deviation of the elemental isotope ratio R from a

standard (equation 1). The standard for nitrogen is today’s atmospheric composition.25

δ15N =
RSample
RStd

− 1 where R=

[
15N

]

[14N ]
(1)

The N2O bulk isotopic composition calculates as the average of δ15Nα and δ15Nβ while the site preference (SP) is defined

as their difference (δ15NSP = δ15Nα - δ15Nβ). [(Brenninkmeijer and Röckmann, 1999); (Park et al., 2011); (Toyoda et al.,

2002)].

δ15N bulk =
δ15Nα + δ15Nβ

2
(2)30

There are multiple natural and anthropogenic sources of N2O. The primary anthropogenic sources of N2O are fertilizers

including nitrogen minerals used for agriculture. The natural sources are primarily nitrification and denitrification in terrestrial
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and aquatic ecosystems. [(Mosier et al., 1998); (Olivier et al., 1998)].

Denitrification is a stepwise biological reduction process in which denitrifying bacteria produce nitrogen (N2). Under anaerobic

conditions the denitrifying bacteria use nitrate (NO−3 ) instead of oxygen as an electron acceptor in the respiration of organic

matter. Through multiple anaerobic reactions N2 is produced as the end product of the complete denitrifying process (reaction

R1) [(Firestone and Davidson, 1989)].5

NO−3 →NO−2 →NO→N2O→N2 (R1)

Each of these anaerobic reactions is carried out by a genuine enzyme, i.e., the production of N2O is caused by the reaction

between nitric oxide (NO) and the enzyme nitric oxide reductase (NOR). The NOR enzyme works as a catalyst in the reduction

of NO as shown in equation R2. [(Wrage et al., 2001); (Tosha and Shiro, 2013)]

2NO+ 2e−+ 2H+→N2O+H2O (R2)10

Reactions with different enzymes typically result in specific isotopic fractionation. The isotope fractionation of the inter-

mediately produced N2O during denitrification is a consequence of multiple reaction steps i.e., the isotope fractionation is

determined as product-to-substrate fractionation. Two species of denitrifying bacteria with slightly different enzymes poten-

tially leads to different fractionation. In this study, we compared the fractionation of N2O by two contrasting denitrifying

bacteria; Pseudomonas fluorescens producing and reducing N2O, and Pseudomonas chlororaphis producing but not reducing15

N2O. We hypothesized that these contrasting denitrifying bacteria show differences in isotope enrichment and SP during N2O

production and reduction.

2 Method

Our objective was to perform continuous position dependent δ15N measurements of two different bacterial cultures during in-

cubation experiments. Using two denitrifying bacterial cultures we determine the isotope enrichment and SP during production20

and reduction of N2O, respectively.

2.1 Instrumentation

Bacterial production of N2O was continuously measured by mid-infrared cavity ringdown spectrometry using a prototype of

the Picarro G5101-i analyzer (in the following named G5101i-CIC) (Picarro, Santa Clara, California, USA). The measurements

are non-destructive and are therefore suitable for incubation experiments. The CRDS instrument measures the 14N, 15Nα and25
15Nβ absorption features of N2O in the wavelength region between 2187.4 cm−1 and 2188 cm−1. The typical precision of the

instrument is 1 ppb for the N2O mixing ratio and 5.2 ‰ for each of the delta values of the two isotopomers [(Balslev-Clausen,

2011)].

Measurements are made by placing the sample delivery system of the G5101i-CIC in a closed loop with a microbial incubation

glass chamber (Fig. 1). Circulation is provided by a "leak-reduced" diaphragm pump installed downstream from the analyzer.30

3
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The pump (KNF N84.4 ANE) has been sealed using vacuum sealant (Celvaseal high vacuum leak sealant, Myers vacuum

repair service, Inc., Kittanning, PA 16201, USA). A low leak rate is prerequisite for accurate measurements in a closed loop

experiment. Before the analyzer, a Nafion unit and an "Ascarite" trap is installed. The Nafion unit removes H2O vapor whereas

the Ascarite trap chemically removes CO2. Both gasses are removed to exclude potential spectral interference with N2O in the

cavity of the analyzer. Underneath the glass chamber a magnetic stirrer is installed. The stirrer serves two purposes 1) ensure a5

complete mixing of the bacterial solution and the added nutrient, i.e. potassium nitrate (KNO−3 ), and 2) facilitate gas exchange.

In addition to the measuring mode, the system can be flushed with N2 (not shown in Fig. 1). The flushing mode is used

to obtain an anaerobic starting point of the incubation experiment free of N2O. The flushing procedure is fully automated

to ensure reproducibility. The entire incubation setup is flushed with N2 for 310 seconds at a high flow rate. The resulting10

overpressure in the incubator is released prior to switching back to the closed loop position.

2.2 Correction of CRDS concentration dependence

Isotope measurements made with the G5101i-CIC have a N2O concentration dependence and need to be corrected. A con-

centration dependent correction is required because there is a 1/concentration dependence, caused by small offsets in the

measurement of the 14N - 15N - 16O and 15N - 14N - 16O peaks. These offsets are caused by baseline ripple created by optical15

cavity etalons. An etalon is an optical effect in which a beam of light undergoes multiple reflections between two reflecting

surfaces, and whose resulting optical transmission or reflection is periodic in wavelength. The ripples are not always constant

in phase, which means that the ripples can shift spectrally, which can cause the offset to drift over time. The result is a con-

centration dependent error to δ of the form ± 1/concentration. Because baseline ripple effects become more dominant as N2O

concentration decreases, the “relative” error is largest at low concentrations.20

Figure 2 shows results from a dilution experiment where we gradually mixed a pure N2O gas with a N2/O2 mixture (20.1 %

O2 and 79.9 % N2, purity 99.999 %). Measurements were performed in a 60 minutes stepwise sequence of both increasing and

decreasing concentrations.

We chose to fit the raw data with a cubic spline smoothing function (CSS-function) [(Brumback and Rice, 1998)]. The best25

fit of these CSS-functions are found using a smoothing parameter of p = 0.999 in a regression analysis. Four outliers were

identified to be outside the 2σ boundary and removed from the data set (the red circles in Fig. 2). After these outliers were

removed the best fit was found again and the concentration dependent correction was applied as shown with the green profiles

in Fig. 2. Over the course of the experiments, no further instrumental drift was observed.

2.3 Calibration gases30

Working standards for N2O bacterial incubations are CIC-MPI-1 and CIC-MPI-2. The two standard gasses were prepared

based on two standard gasses provided by J. Kaiser at University of East Anglia (UEA), Norwich, United Kingdom. These

standard gasses, MPI-1 and MPI-2, are pure N2O gasses with different isotopic composition [(Kaiser, 2002)]. In our laboratory,
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each of the standard gasses was diluted with a N2/O2 mixture (20.1 % O2 and 79.9 % N2, purity 99.999 %) resulting in the two

new standard gasses, CIC-MPI-1 and CIC-MPI-2. Both CIC-standard gasses were measured at four different laboratories to

ensure consistent isotopic values according to an international standard reference. The gasses were measured at Tokyo Institute

of Technology in Japan, at Institute for Marine and Atmospheric research Utrecht in The Netherlands (IMAU), at the Centre

for Ice and Climate in Copenhagen, Denmark (CIC), and originally at University of East Anglia in Norwich, United Kingdom5

(UEA). At Tokyo-Tech, three GC/IRMS measurements of each CIC-MPI gas resulted in an average δ15Nα = 1.44 ‰ ± 0.09

and an average δ15Nβ = 1.24 ‰ ± 0.35 for CIC-MPI-1, and for CIC-MPI-2 the measurements resulted in average δ15Nα =

12.79 ‰ ± 0.22 and δ15Nβ = -15.41 ‰ ± 0.24. At IMAU 22 GC/IRMS measurements of each CIC-MPI gas resulted for

CIC-MPI-1 in δ15Nα = 2.30 ‰ ± 0.25 and δ15Nβ = -0.16 ‰ ± 0.33, and for CIC-MPI-2 in δ15Nα = 11.79 ‰ ± 0.37 and

δ15Nβ = -15.16 ‰ ± 0.46. At CIC each CIC-MPI gas was continuously measured over two hours. The average results for10

CIC-MPI-1 was δ15Nα = 0.53 ‰ ± 2.61 and δ15Nβ = 4.95 ‰ ± 3.57, and for CIC-MPI-2 in δ15Nα = 12.58 ‰ ± 2.75 and

δ15Nβ = -12.89 ‰ ± 3.21. All measurements were performed relative to atmospheric air and our position dependent δ15N

measurements are therefore well referenced to atmospheric air. An average of the concentrations and the isotopic compositions

of the two new standard gasses are specified (Table 1).

2.4 Pure bacterial cultures15

The two bacterial cultures used in this study are both gram-negative bacteria with the capability to denitrify, i.e. reduce nitrate

to gaseous nitrogen. Isolates were obtained from an agricultural soil of sandy loam type (Roskilde Experimental Station) on

11 April 1983. One culture is a Pseudomonas fluorescens, bio-type D that reduces NO−3 all the way to N2. The second culture,

Pseudomonas chlororaphis, is only capable of reducing NO−3 to N2O [(Christensen and Bonde, 1985)], which means that the

nitrous oxide reductase is absent or at least not active in this organism. The latter bacterium is contained in the American Type20

Culture Collection with accession number ATCC 43928 [(Christensen and Tiedje, 1988)]. The cultures were grown anoxic in

50 ml serum bottles with 1/10 tryptic soy broth (Difco) added 0.1 g KNO3 ·L−1. After six days of growth at room temperature

(24 ◦C), P. chlororaphis had reduced all N in NO−3 into N2O. The bacterial culture of P. Fluorescens was cultivated for six

days at a slightly lower temperature (15 ◦C) to assure that the cultures were in a comparable phase of potential activity when

assayed for gas production/reduction activity. The six days old cultures were used in the incubation experiment in which it is25

conditional for the denitrifying process that organic carbon is available, that the concentration of oxygen is low and that the

concentration of NO−3 is high [(Wrage et al., 2001); (Stuart Chapin III et al., 2002)].

2.4.1 Bacterial incubation experiments

50 mL bacterial solution of P. chlororaphis or P. fluorescens was placed in a petri-dish in the 1000 mL incubation chamber.

Hereafter, the setup was flushed with pure N2 (purity 99.9999 %) to ensure anaerobic conditions. To ensure no N2O gas30

exchange prior to the experiment, the bacterial solution was left for 90 minutes under constant magnetic stirring. Then the in-

cubation chamber was opened and the bacterial solution was fed with 2.5 mL and 15 mL 0.45 mM KNO3 for P. chlororaphis

and P. fluorescens, respectively. The incubation experiment started by again flushing the setup with pure N2 immediately after

5
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the addition of KNO3.

A total of seven replicate incubations of the full denitrifying bacteria (P. fluorescens) and five replicate incubations of the den-

itrifying bacteria with no active nitrous oxide reductase (P. chlororaphis) were assessed. All of the cultures were continuously

measured from the moment KNO3 was added to the bacterial incubations. The experiment with P. fluorescens was terminated

when the N2O concentration was below 0.2 ppm. For P. chlororaphis, we defined the end of the experiment when the N2O5

concentration had reached a constant level for 200 minutes.

The CIC-MPI gasses are based on a N2/O2 mixture where the incubation measurements are based on N2. This difference does

not affect the results since no O2 spectral lines exist in the wavelength region set in the G5101i-CIC.

2.5 Analysis of isotope enrichment

The observed isotope changes in N2O during our incubation experiment can be analyzed in terms of Rayleigh fractionation.10

Rayleigh fractionation describes the changing isotopic composition in reactant and product of a unidirectional reaction. Equa-

tion 3 gives the isotope ratio of the reactant as:

Rs
Rs,0

= f(αp/s−1) (3)

where Rs,0 is the initial isotope ratio of the reactant, Rs is the isotope ratio of the product at time t, αp/r is the fractionation factor

of the product versus the substrate, and f is the unreacted fraction of substrate at time t. The isotope enrichment calculates as ε15

= α – 1 from the fractionation factors in equation 3. We do not measure the isotopic composition of KNO3 in our experiments.

However, by definition the end values of N2O for P. chlororaphis when all KNO3 has reacted has to be identical to the initial

value of KNO3.

The Rayleigh type distillation is valid for the bulk isotope ratios of N2O. The corresponding equation for the accumulated

product is:20

Rbulkp,acc =R0 ·
(

1− fαbulk

1− f

)
(4)

The isotope enrichment for the bulk can be described using the isotope enrichment of the product ([(Menyailo and Hungate,

2006); (Ostrom et al., 2007); (Mariotti et al., 1981); (Lewicka-Szczebak et al., 2014)]).

εbulkp,acc = (αbulk − 1) (5)

The described Rayleigh equation is not directly applicable to the isotopomers, as these are both direct products of the same25

denitrification process from the same batch of denitrifying bacteria and nitrate. An isotopomer correction factor derives to ϕα

and ϕβ for the two isotopomers respectively.

ϕα = 1 +
(
αβ −αα

2

)
(6)

ϕβ = 1−
(
αβ −αα

2

)
(7)30
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The Rayleigh equation for the accumulated product of an isotopomer is therefore:

Risotopomerp,acc =Rbulkp,acc ·ϕ (8)

Equation 8 is valid for P. chlororaphis. For P. fluorescens, both an immediate reduction and an uptake reduction take place

simultaneously with N2O production due to the pre-experimental cultivation leading to activation of all enzymes in the bac-

terial solution. Part of the freshly produced N2O is therefore immediately reduced to N2. This reduction is fractionating with5

fractionation factor αR. The isotope imprint of the reduction on the remaining N2O depends on the ratio between reduction

and production rate (γ). Assuming γ is constant results in the following first order approximation.

Rp,r =
Rp,acc · (1−αR · γ)

1− γ (9)

Rp,r,acc =
Rp,r · f · (1− γ)
f · (1− γ) (10)10

For any calculated ratio the values are given in ‰ using the delta-notation (equation 1).

The SP of N2O, being the difference between the δ15Nα and δ15Nβ , is not compatible to the Rayleigh equations. Applying the

assumption that δs,0 << 1000 ‰, the isotope enrichment simplifies to εp/s ≈ δp−δs, such that e.g., εα = (δ15Nα - δ15NNO3 ).

For SP, the isotope enrichment is therefore given as εsp = εα− εβ , which derives to ([(Menyailo and Hungate, 2006); (Ostrom

et al., 2007); (Mariotti et al., 1981); (Lewicka-Szczebak et al., 2014)]):15

εSP = δ15Nα− δ15Nβ (11)

2.5.1 Application of Rayleigh model

We determine the respective isotope enrichment during production and reduction of N2O for each of the bacterial strains

assuming a Rayleigh type process. The Rayleigh distillation model is fitted to the δ-value and the N2O concentration data. As

P. chlororaphis is a pure producer of N2O this is straight forward. For P. fluorescens the section of production is defined as20

being from the start of the measurements until the end of net production. From the calculations of the production rates (see

Fig. 3) we believe that N2O production continues after the point of maximum concentration. Therefore the unreacted fraction

at the end of net production is iteratively found and is > 0. Other parameters that are iteratively found are the fractionation

factor between α = 0 and α = 1 and the reduction to production rate γ (between 0 and 1). The fractionation factors resulting

in the highest R2 values was picked as the correct fractionation factor for each specific evolution. Production of N2O by P.25

fluorescens continues past the point of net production. However, at one point NO−3 , NO−2 and NO are fully consumed and P.

fluorescens is forced to exclusively reduce N2O. We defined the start of the section where P. fluorescens is only reducing N2O

to the point where both δ15Nα and δ15Nβ start decreasing. Between the end of the net production and the start of the exclusive

reduction, no Rayleigh model can be fitted.

The models are fitted using both the CDC data and the 5 minutes running mean of the CDC data. The best fit is found using30

7
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an iterative approach of the R2 value between the measured data and the Rayleigh distillation equation for the accumulated

product (equation 8 and equation 10 for P. chlororaphis and P. fluorescens, respectively). Iterative calculations are performed

for fractionation factor between α = 0 and α = 1 during production of N2O, and between α = 1 and α = 2 during reduction of

N2O. The reduction correction parameter (γ) is iteratively determined to be between γ = 0 and γ = 1. The fractionation factors

resulting in the highest R2 values are picked as the correct fractionation factor for each specific evolution.5

3 Results

The evolution of N2O over time from the two bacterial strains shows two very distinctive patterns with both an increasing and

decreasing N2O concentration characteristic for P. fluorescens and an increasing N2O concentration followed by a stabilization

characteristic for P. chlororaphis (Fig. 3A) as has previously been described by Christensen and Tiedje (1988). These distinctive

characteristics are only vaguely seen in the respective dynamics of the SP for the two bacterial strains (Fig. 4A, 4B, 5A and10

5B).

3.1 Pseudomonas chlororaphis

Paralleling the increase in N2O concentration (Fig. 3A), we also find an increase in δ15Nα, δ15Nβ and δ15Nbulk over time

(Fig. 4A and 4B). The final product of P. chlororaphis is N2O; this is a unidirectional transfer of nitrogen from KNO3 to N2O

and thereby a Rayleigh process although multiple fractionations are involved. In Fig. 4A and 4B, we plot the best fit Rayleigh15

profile for δ15Nα and δ15Nβ respectively.

The modeled Rayleigh distillation profiles were found to match the production of N2O from P. chlororaphis to a relatively

high degree. The average correlation coefficients (R2) between data and fitted Rayleigh curves are 0.709, 0.654, and 0.767

for δ15Nα, δ15Nβ and δ15Nbulk respectively. The calculations of the isotope enrichment for the fractionation of δ15Nα give a

mean value of -8.8 ‰ ± 1.4. For δ15Nβ the mean enrichment factor was found to be -2.2 ‰ ± 1.1 (Table 4). These values20

leads to a mean SP value of -6.6 ‰ ± 1.8 and a δ15Nbulk enrichment factor of -5.5 ‰ ± 0.9.

3.2 Pseudomonas fluorescens

Continuous measurements of the evolution of N2O produced and consumed by the denitrifying bacteria P. fluorescens are

presented in Fig. 5A and 5B for the δ15Nα and δ15Nβ , respectively. The correlation coefficient of the fitted apparent Rayleigh

model for the production matches the continuously measured δ15Nα data by 94.1 % on average using the R2 method for the25

seven replicates of P. fluorescens incubations. Equivalent R2 average for δ15Nβ are 88.7 %, whereas the average for δ15Nbulk

are found to be 94.8 %. The R2 found for the reduction part for the two isotopomers and the bulk is 91.3 % for δ15Nα, 76.3 %

for δ15Nβ , and 91.7 % for δ15Nbulk on average for the seven replicates. The fractionation during both the production and the

reduction are therefore following the apparent Rayleigh type distillation to a large degree. The isotope enrichment calculated

using these models are therefore a good representation for the fractionation caused by the P. fluorescens bacteria on the N2O.30

The resulting isotope enrichment is presented in Table 2 for the production part and in Table 3 for the reduction part together

8
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with the calculated isotope enrichment for the SP. During production of N2O, the mean enrichment for SP was found to be

εSP = -5.7 ‰ ± 5.6 while the εbulk = -50.4 ‰ ± 9.3 for the bulk, hence there is a difference of 44.9 ‰ and 0.8 ‰ for εSP and

εbulk, respectively, to P. chlororaphis. During reduction of N2O the mean enrichment for SP was found to be εSP = -2.3 ‰ ±
3.2 and εbulk = 8.5 ‰ ± 3.7 for the bulk.

4 Discussion5

The two bacteria investigated are denitrifiers, i.e. functionally similar but with P. chlororaphis lacking the ability to reduce N2O

to N2. Both denitrifiers were cultivated under anaerobic conditions leading to active nitric oxide reductase (both cultures) and

nitrous oxide reductase (P. chlororaphis). This leads to a pre-experimental expectation that when fed the same amount of nitrate

the maximum N2O concentration and the N2O production rate should be lower for P. fluorescens than for P. chlororaphis.

In Fig. 3, an example of the N2O evolution by the two bacterial strains is plotted as the concentration of N2O and the produc-10

tion rate versus time. Starting at time zero and moving with the profiles forward in time, the concentration of N2O produced

by P. chlororaphis has a higher production rate and reaches a higher level in concentration than that produced by P. fluorescens

even though P. fluorescens received six times more nutrients than P. chlororaphis. These observations indicate that the nitrous

oxide reductase consumes N2O from a very early stage of the N2O turnover, likely because the cultures were grown under

anaerobic conditions leaving both N2O-producing and -consuming enzymes active from the beginning of the experiment.15

N2O produced by the two denitrifying bacteria differs in the bulk isotope enrichment whereas the SP enrichments are averaging

to similar values. From the presented experiments we have found that the difference in enrichment between P. chlororaphis and

P. fluorescens on average is 44.9 ‰ and 0.8 ‰ for εbulk and εSP respectively (Fig. 6). We therefore find that the isotopomers

produced by P. fluorescens are more depleted than those produced from P. chlororaphis, since the Rayleigh is calculated as

product-to-substrate fractionation. Sutka and Ostrom (2006) conclude that a difference in the nitrite reductase does not have an20

effect on the SP during denitrification. This conclusion is based on measurements of P. chlororaphis (ATCC 43928) and P. au-

reofaciens (ATCC 13985) possessing cd1-type nitrite reductase and Cu-containing nitrite reductase, respectively. We conclude

the same for P. fluorescens and P. chlororaphis and therefore propose that the conclusion applies to all denitrifying bacteria.

The observed difference in the isotope enrichment during production of N2O could originate from a difference in the nitric

oxide reductase enzymes. Nitric oxide reductase is the primary enzyme in a chain of catalytic reactions leading to the produc-25

tion of N2O [(Hino et al., 2010);(Hendriks et al., 2000)]. The catalytic cycle involving production of N2O from NO has yet to

be completely understood with respect to the formation of the N-N double bond, the complexity of the structural information

of nitric oxide reductase, the proton transfer pathway into nitric oxide reductase [(Tosha and Shiro, 2013)], and the very short

lifetime of the intermediate states of the molecules [(Collman et al., 2008)]. We hypothesized that the difference in the bulk ob-

served during incubation of our two bacterial species was due to different nitric oxide reductases produced by the two species.30

To test this hypothesis, we compared the DNA sequences of the norB and norC genes coding for the large and small subunit,

respectively, of nitric oxide reductase from three different strains of P. fluorescens (strains NCIMB 11764 [Genbank acces-

sion number CP010945], PA3G8 [742825335], and F113 [CP003150]) and P. chlororaphis (strains O6 [389686655], PA23
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[749309655], and UFB2 [836582503]) as well as two closely related denitrifying species, P. aeruginosa and P. stutzeri. Our

analysis revealed 1) a very high similarity of the two genes in P. fluorescens and P. chlororaphis and 2) that the intra-species

variability of the two genes was similar to the inter-species variation. This led us to reject our hypothesis and conclude that

differences in nitric oxide enzymes produced by the two species were not responsible for the observed differences in the bulk.

We hypothesized that the difference in the bulk isotope enrichment between the two bacteria originates from mass-dependent5

fractionation associated with the nitrous oxide reductase in P. fluorescens. After production of N2O molecules, the light

molecules degas quickly out of the liquid phase and away from the nitrous oxide reductase. The heavy N2O molecules are

slower and react with the nitrous oxide reductase leading to a depletion of the heavy N2O isotopes. As this is a diffusion driven

process it is mass-dependent with no detectable effect on SP.

4.1 Comparison to previous studies10

Numerous publications have presented experiments with both in situ measurements of denitrifying bacterial production and

reduction of N2O during incubation of bacterial cultures and soil samples. In Fig. 6, we present a comparison between the

results from this study and the results from a selection of the previously published results. The general understanding is that

denitrification results in SP ≤ 10 ‰. Applying different incubation techniques on soils with different properties showed SP

during production of N2O between -3 ‰ and 9 ‰ and between -2 ‰ and -8 ‰ during reduction [(Lewicka-Szczebak et al.,15

2014);(Well and Flessa, 2009a, b)]. During production of N2O in bacterial culture experiments involving P. chlororaphis

(ATCC 43928) and P. aureofaciens (ATCC 13985), Sutka and Ostrom (2006) found SP values of -2.5 ‰ and 1.3 ‰ and

δ15Nbulk values of between -7 ‰ and -10 ‰. Ostrom et al. (2007) investigated bacterial reduction of N2O using P. stutzeri

(provided by J. M. Tiedje) and P. denitrificans (ATCC 13867), and the SP resulting from this bacterial reduction of N2O was

between -6.8 ‰ and -5 ‰.20

Our results for N2O SP and bulk enrichment from P. chlororaphis are in the same range as what has been reported previously.

Measurements of P. fluorescens on the other hand show more depleted bulk enrichment values while the SP enrichment is in

line with previous results. For the reduction of N2O both measurements of the bulk isotope enrichment and SP are in line with

earlier results.25

5 Conclusions

We have presented successful continuous measurements of the denitrifying bacterial process using two different strains of

bacteria: P. fluorescens which is a full denitrifier, and P. chlororaphis which is a denitrifier without nitrous oxide reductase

activity. Assuming a Rayleigh type fractionation, modified for isotopomers and simultaneous reduction, we have calculated the

isotope enrichment during production and reduction of N2O. The enrichment for P. chlororaphis is in line with previous results30

for both SP and bulk. For P. fluorescens, we find similar SP enrichment values during N2O production and reduction. The bulk
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isotope enrichment calculated for N2O reduction is in line with previously presented results though for production we find an

isotope depletion. We believe that, in our experiment, the bulk isotope depletion is due to mass-dependent fractionation.

Author contributions. MW and TB designed the experiments and MW carried out the measurements and analyzed data. SC prepared the

bacteria prior to experiments. AP analyzed the bacterial DNA sequences. DBH and EC developed the G5101i-CIC analyzer. MW prepared
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Figure 1. Simplified schematic of the incubation setup. The green and the purple arrows show the flow direction of the measuring gas and

the purge gas, respectively.

Figure 2. The concentration-dependent correction (CDC) for (A) δ15Nα and (B) δ15Nβ respectively. In both Figures, the raw data are

presented in black, the CDC data is plotted in green, and the outliers are marked with red circles.
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Figure 3. Continuous measurements of (A) N2O concentrations and (B) the N2O production rate from experiments with P. fluorescens

(green) and P. chlororaphis (blue), respectively. Only the first 120 minutes of the N2O production. Note that the scaling of the two horizontal

axis differs.

Figure 4A. The evolution of (A) the δ15Nα isotopomers evolution in relation to the concentration of N2O and the modeled Rayleigh type

distillation. The blue profile is the CDC data. The black profile is the five minutes running mean of the CDC data. The red profile is the

modeled Rayleigh type distillation curve for the production of N2O. The blue arrow indicate the direction of time.
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Figure 4B. The evolution of the δ15Nβ isotopomers evolution in relation to the concentration of N2O and the modeled Rayleigh type

distillation. The blue profile is the CDC data. The black profile is the five minutes running mean of the CDC data. The red profile is the

modeled Rayleigh type distillation curve for the production of N2O. The blue arrow indicate the direction of time.

Figure 5A. The evolution of the δ15Nα isotopomers evolution in relation to the concentration of N2O and the modeled Rayleigh type

distillation. The blue profile is the CDC data. The black profile is the five minutes running mean of the CDC data. The red profile is

the modeled apparent Rayleigh type distillation curve for the production of N2O. The blue arrow indicates the direction of time during

production of N2O whereas the green arrow indicates the direction of time during reduction of N2O.
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Figure 5B. The evolution of the δ15Nβ isotopomers evolution in relation to the concentration of N2O and the modeled Rayleigh type

distillation. The blue profile is the CDC data. The black profile is the five minutes running mean of the CDC data. The red profile is

the modeled apparent Rayleigh type distillation curve for the production of N2O. The blue arrow indicates the direction of time during

production of N2O whereas the green arrow indicates the direction of time during reduction of N2O.

Figure 6. (A) Bulk and (B) SP enrichment factors calculated from the continuous measurements with P. fluorescens (green) and P. chloro-

raphis (blue) respectively. Both the production and reduction isotope enrichment values are shown and compared with previously presented

results. [1] [This study], [2] [(Well and Flessa, 2009a)], [3] [(Well and Flessa, 2009b)], [4] [(Lewicka-Szczebak et al., 2014)], [5] [(Sutka

and Ostrom, 2006)], [6] [(Ostrom et al., 2007)].
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Table 1. Measurements of standard gas CIC-MPI-1 and CIC-MPI-2, diluted MPI-1 and MPI-2 gasses respectively. The listed values are

mean-values of measurements performed at Tokyo-Tech, IMAU, and CIC.

Reference gas [N2O] (ppb) δ15Nbulk (‰) δ15Nα (‰) δ15Nβ (‰)

CIC-MPI-I 1904.0 ± 9.2 1.23 ± 1.97 1.45 ± 2.09 1.01 ± 1.85

CIC-MPI-II 1840.9 ± 12.8 -1.69 ± 1.74 12.02 ± 1.78 -15.40 ± 1.69

Table 2. Enrichment factors for the production of N2O from P. fluorescens.

Replica # εα (‰) εβ (‰) εbulk(‰) εSP (‰)

1 -64.1 -55.7 -59.9 -8.4

2 -41.6 -40.0 -40.8 -1.6

3 -45.9 -32.0 -39.0 -13.9

4 -64.7 -56.3 -60.5 -8.4

5 -51.2 -43.3 -47.3 -7.9

6 -60.8 -57.5 -59.2 -3.3

7 -44.5 -47.8 -46.2 3.3

Mean -53.3 ± 9.8 -47.5 ± 9.7 -50.4 ± 9.3 -5.7 ± 5.6

Table 3. Enrichment factors for the reduction of N2O from P. fluorescens.

Replica # εα (‰) εβ (‰) εbulk(‰) εSP (‰)

1 10.0 8.1 8.5 1.9

2 3.5 4.5 3.5 -1.0

3 11.9 8.1 9.4 3.8

4 4.6 6.2 5.1 -1.6

5 16.3 8.7 11.7 7.6

6 16.9 13.0 14.3 3.9

7 9.8 8.3 7.3 1.5

Mean 10.4 ± 5.2 8.1 ± 2.6 8.5 ± 3.7 2.3 ± 3.2
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Table 4. Enrichment factors for the production of N2O from P. chlororaphis.

Replica # εα (‰) εβ (‰) εbulk(‰) εSP (‰)

1 -10.4 -1.5 -6.0 -8.9

2 -7.7 -0.8 -4.3 -6.9

3 -8.7 -2.1 -5.4 -6.6

4 -7.2 -3.4 -5.3 -3.8

5 -10.0 -3.3 -6.7 -6.7

Mean -8.8 ± 1.4 -2.2 ± 1.1 -5.5 ± 0.9 -6.5 ± 1.8
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