2,262 research outputs found

    Dynamics of collective performance in collaboration networks

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Today, many complex tasks are assigned to teams, rather than individuals. One reason for teaming up is expansion of the skill coverage of each individual to the joint team skill set. However, numerous empirical studies of human groups suggest that the performance of equally skilled teams can widely differ. Two natural question arise: What are the factors defining team performance? and How can we best predict the performance of a given team on a specific task? While the team members' task-related capabilities constrain the potential for the team's success, the key to understanding team performance is in the analysis of the team process, encompassing the behaviors of the team members during task completion. In this study, we extend the existing body of research on team process and prediction models of team performance. Specifically, we analyze the dynamics of historical team performance over a series of tasks as well as the fine-grained patterns of collaboration between team members, and formally connect these dynamics to the team performance in the predictive models. Our major qualitative finding is that higher performing teams have well-connected collaboration networks-as indicated by the topological and spectral properties of the latter-which are more robust to perturbations, and where network processes spread more efficiently. Our major quantitative finding is that our predictive models deliver accurate team performance predictions-with a prediction error of 15-25%-on a variety of simple tasks, outperforming baseline models that do not capture the micro-level dynamics of team member behaviors. We also show how to use our models in an application, for optimal online planning of workload distribution in an organization. Our findings emphasize the importance of studying the dynamics of team collaboration as the major driver of high performance in teams.National Science Foundation (U.S.) (Grant 1322254

    Integrated Health Monitoring of Transportation Structures with Magnetic Fe-SMA Wires

    Get PDF
    In this work, the magnetization response of FeMnAlNi superelastic shape memory alloys (SMAs) is investigated under stress. Wires with a diameter of 0.5 mm were subjected to repeated abnormal grain growth heat treatments in order to obtain bamboo structured oligocrystalline grains that are necessary for superelasticity. Solution heat treated wires were aged at 200ºC for 3 h to strengthen the austenite matrix. Tensile cyclic tests were performed at room temperature until failure, while the magnetization response of the wires was monitored using a hall sensor during loading and unloading in each cycle. It is observed that after each cycle, overall magnetization of the alloy decreases once the irrecoverable strain is introduced after large deformations and magnetization of the sample is inversely correlated with the irrecoverable strain. The findings of this work show that the magnetic shift in Fe-SMAs under deformation can be used a health monitoring tool in next generation structures to detect large deformations and cracks

    A simple, low-cost conductive composite material for 3D printing of electronic sensors

    Get PDF
    3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes (‘rapid prototyping’) before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term ‘carbomorph’ and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes

    A high-throughput HPLC method for simultaneous quantification of pyrethroid and pyriproxyfen in long-lasting insecticide-treated nets

    Get PDF
    Long-lasting insecticide-treated nets (LLINs) play a crucial role in preventing malaria transmission. LLINs should remain effective for at least three years, even after repeated washings. Currently, monitoring insecticides in LLINs is cumbersome, costly, and requires specialized equipment and hazardous solvents. Our aim was to develop a simple, high-throughput and low-resource method for measuring insecticides in LLINs. To extract insecticides, polyethylene-LLIN samples were heated at 85 °C for 45 min in a non-hazardous solvent mix containing dicyclohexylphthalate as an internal standard. The extraction solvent was reduced from 50 to 5 ml using a 0.2 g sample, 90% smaller than the recommended sample size. By optimizing HPLC chromatography, we simultaneously detected pyrethroid and pyriproxyfen insecticides with high sensitivity in LLIN's extract. The method can quantify levels ≥ 0.0015% permethrin, 0.00045% alpha-cypermethrin and 0.00025% pyriproxyfen (w/w) in polyethylene, allowing for insecticide tracking before and after the use of LLINs. This method can be used to assess LLINs with 1% pyriproxyfen (pyriproxyfen-LLIN) or 2% permethrin (Olyset® Net), 1% pyriproxyfen and 2% permethrin (Olyset® Duo), or 0.55% pyriproxyfen and 0.55% alpha-cypermethrin (Royal Gaurd®). One can run 120 samples (40 nets) simultaneously with high precision and accuracy, improving throughput and reducing labour, costs, and environmental impact

    Single-Species Microarrays and Comparative Transcriptomics

    Get PDF
    BACKGROUND: Prefabricated expression microarrays are currently available for only a few species but methods have been proposed to extend their application to comparisons between divergent genomes. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrate that the hybridization intensity of genomic DNA is a poor basis on which to select unbiased probes on Affymetrix expression arrays for studies of comparative transcriptomics, and that doing so produces spurious results. We used the Affymetrix Xenopus laevis microarray to evaluate expression divergence between X. laevis, X. borealis, and their F1 hybrids. When data are analyzed with probes that interrogate only sequences with confirmed identity in both species, we recover results that differ substantially analyses that use genomic DNA hybridizations to select probes. CONCLUSIONS/SIGNIFICANCE: Our findings have implications for the experimental design of comparative expression studies that use single-species microarrays, and for our understanding of divergent expression in hybrid clawed frogs. These findings also highlight important limitations of single-species microarrays for studies of comparative transcriptomics of polyploid species

    Prevalence of BRCA1 and BRCA2 Mutations in Korean Breast Cancer Patients

    Get PDF
    The incidence of breast cancer in Korea has been increasing in recent years, such that it is now the most common female cancer. Breast cancer in Korea is characterized by an earlier age of onset than in Western countries, suggesting that it would be related with genetic background. We assayed germline mutations in the BRCA genes to evaluate their genetic pathology in Korean breast cancer patients. The study subjects consisted of 173 patients at clinically higher risk and 109 unselected patients. Germline mutations in the entire coding sequences of the BRCA1 and BRCA2 genes were analyzed by Conformation-Sensitive Gel Electrophoresis (CSGE), and any aberrantly-sized band was sequenced. BRCA mutations were present in 12.7% of the high risk patients, compared with 2.8% of the unselected patients. Among high risk patients, mutations were most prevalent in patients with a family history of breast or first-degree ovarian cancer (22.1%), followed by those with male breast cancer (20%), bilateral breast cancer (20%), multiple organ cancer including breast (13%) and younger breast cancer patients (aged <35 yr) (8.1%). Moreover, BRCA mutations were detected in 34.8% of patients having two high-risk factors. These findings suggest that BRCA gene mutation analysis should be performed on Korean patients with high-risk factors for breast cancer

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentreofmassframeisusedtosuppressthelargemultijetbackground.ThecrosssectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
    corecore