2,385 research outputs found
Overexpression of ZEB2 in Peritumoral Liver Tissue Correlates with Favorable Survival after Curative Resection of Hepatocellular Carcinoma
BACKGROUND: ZEB2 has been suggested to mediate EMT and disease aggressiveness in several types of human cancers. However, the expression patterns of ZEB2 in hepatocellular carcinoma (HCC) and its effect on prognosis of HCC patients treated with hepatectomy are unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this study, the methods of tissue microarray and immunohistochemistry (IHC) were utilized to investigate ZEB2 expression in HCC and peritumoral liver tissue (PLT). Receiver operating characteristic (ROC), spearman's rank correlation, Kaplan-Meier plots and Cox proportional hazards regression model were used to analyze the data. Up-regulated expression of cytoplasmic/nuclear ZEB2 protein was observed in the majority of PLTs, when compared to HCCs. Further analysis showed that overexpression of cytoplasmic ZEB2 in HCCs was inversely correlated with AFP level, tumor size and differentiation (P<0.05). Also, overexpression of cytoplasmic ZEB2 in PLTs correlated with lower AFP level (P<0.05). In univariate survival analysis, a significant association between overexpression of cytoplasmic ZEB2 by HCCs/PLTs and longer patients' survival was found (P<0.05). Importantly, cytoplasmic ZEB2 expression in PLTs was evaluated as an independent prognostic factor in multivariate analysis (P<0.05). Consequently, a new clinicopathologic prognostic model with cytoplasmic ZEB2 expression (including HCCs and PLTs) was constructed. The model could significantly stratify risk (low, intermediate and high) for overall survival (P = 0.002). CONCLUSIONS/SIGNIFICANCE: Our findings provide a basis for the concept that cytoplasmic ZEB2 expressed by PLTs can predict the postoperative survival of patients with HCC. The combined cytoplasmic ZEB2 prognostic model may become a useful tool for identifying patients with different clinical outcomes
Catalytic Function of PLA2G6 Is Impaired by Mutations Associated with Infantile Neuroaxonal Dystrophy but Not Dystonia-Parkinsonism
Mutations in the PLA2G6 gene have been identified in autosomal recessive neurodegenerative diseases classified as infantile neuroaxonal dystrophy (INAD), neurodegeneration with brain iron accumulation (NBIA), and dystonia-parkinsonism. These clinical syndromes display two significantly different disease phenotypes. NBIA and INAD are very similar, involving widespread neurodegeneration that begins within the first 1-2 years of life. In contrast, patients with dystonia-parkinsonism present with a parkinsonian movement disorder beginning at 15 to 30 years of age. The PLA2G6 gene encodes the PLA2G6 enzyme, also known as group VIA calcium-independent phospholipase A(2), which has previously been shown to hydrolyze the sn-2 acyl chain of phospholipids, generating free fatty acids and lysophospholipids.We produced purified recombinant wildtype (WT) and mutant human PLA2G6 proteins and examined their catalytic function using in vitro assays with radiolabeled lipid substrates. We find that human PLA2G6 enzyme hydrolyzes both phospholipids and lysophospholipids, releasing free fatty acids. Mutations associated with different disease phenotypes have different effects on catalytic activity. Mutations associated with INAD/NBIA cause loss of enzyme activity, with mutant proteins exhibiting less than 20% of the specific activity of WT protein in both lysophospholipase and phospholipase assays. In contrast, mutations associated with dystonia-parkinsonism do not impair catalytic activity, and two mutations produce a significant increase in specific activity for phospholipid but not lysophospholipid substrates.These results indicate that different alterations in PLA2G6 function produce the different disease phenotypes of NBIA/INAD and dystonia-parkinsonism. INAD/NBIA is caused by loss of the ability of PLA2G6 to catalyze fatty acid release from phospholipids, which predicts accumulation of PLA2G6 phospholipid substrates and provides a mechanistic explanation for the accumulation of membranes in neuroaxonal spheroids previously observed in histopathological studies of INAD/NBIA. In contrast, dystonia-parkinsonism mutations do not appear to directly impair catalytic function, but may modify substrate preferences or regulatory mechanisms for PLA2G6
Physical Activity Attenuates the Genetic Predisposition to Obesity in 20,000 Men and Women from EPIC-Norfolk Prospective Population Study
Shengxu Li and colleagues use data from a large prospective observational cohort to examine the extent to which a genetic predisposition toward obesity may be modified by living a physically active lifestyle
A Bi-Functional Anti-Thrombosis Protein Containing Both Direct-Acting Fibrin(ogen)olytic and Plasminogen-Activating Activities
Direct-acting fibrin(ogen)olytic agents such as plasmin have been proved to contain effective and safety thrombolytic potential. Unfortunately, plasmin is ineffective when administered by the intravenous route because it was neutralized by plasma antiplasmin. Direct-acting fibrin(ogen)olytic agents with resistance against antiplasmin will brighten the prospect of anti-thrombosis. As reported in ‘Compendium of Materia Medica’, the insect of Eupolyphaga sinensis Walker has been used as traditional anti-thrombosis medicine without bleeding risk for several hundreds years. Currently, we have identified a fibrin(ogen)olytic protein (Eupolytin1) containing both fibrin(ogen)olytic and plasminogen-activating (PA) activities from the beetle, E. sinensis. Objectives: To investigate the role of native and recombinant eupolytin1 in fibrin(ogen)olytic and plasminogen-activating processes. Methods and Results: Using thrombus animal model, eupolytin1 was proved to contain strong and rapid thrombolytic ability and safety in vivo, which are better than that of urokinase. Most importantly, no bleeding complications were appeared even the intravenous dose up to 0.12 µmol/kg body weight (3 times of tested dose which could completely lyse experimental thrombi) in rabbits. It is the first report of thrombolytic agents containing both direct-acting fibrin(ogen)olytic and plasminogen-activating activities. Conclusions: The study identified novel thrombolytic agent with prospecting clinical potential because of its bi-functional merits containing both plasmin- and PA-like activities and unique pharmacological kinetics in vivo
PARP-1 Val762Ala Polymorphism Is Associated with Risk of Cervical Carcinoma
PARP-1 is a nuclear enzyme that plays an important role in DNA repair, recombination, proliferation and the genome stability. The PARP-1 Val762Ala polymorphism has been associated with increased risk of developing cancers of the prostate, esophagus and lung. The aim of this study was to determine whether the PARP-1 Val762Ala polymorphism is associated with the risk of cervical carcinoma. MA-PCR was used to genotype the PARP-1 Val762Ala polymorphism in 539 women with cervical carcinoma, 480 women with CIN and 800 controls. The genotyping method was confirmed by the DNA sequencing analysis. The PARP-1 Val762Ala polymorphism was not associated with the risk of CIN. However, women carrying the PARP-1 Ala762Ala genotype were significantly susceptible to cervical carcinoma (OR: 2.70, 95% CI: 1.47–3.70), and the similar results were also found in squamous cell carcinoma (OR: 2.56, 95% CI: 1.47–3.70). In HPV positive population, the PARP-1 Ala762Ala genotype was also associated with increased risk of cervical carcinoma (OR: 5.56, 95% CI: 2.08–14.3). Our results indicate that the PARP-1 Ala762Ala genotype increases the risk of cervical carcinoma
Angular and Current-Target Correlations in Deep Inelastic Scattering at HERA
Correlations between charged particles in deep inelastic ep scattering have
been studied in the Breit frame with the ZEUS detector at HERA using an
integrated luminosity of 6.4 pb-1. Short-range correlations are analysed in
terms of the angular separation between current-region particles within a cone
centred around the virtual photon axis. Long-range correlations between the
current and target regions have also been measured. The data support
predictions for the scaling behaviour of the angular correlations at high Q2
and for anti-correlations between the current and target regions over a large
range in Q2 and in the Bjorken scaling variable x. Analytic QCD calculations
and Monte Carlo models correctly describe the trends of the data at high Q2,
but show quantitative discrepancies. The data show differences between the
correlations in deep inelastic scattering and e+e- annihilation.Comment: 26 pages including 10 figures (submitted to Eur. J. Phys. C
Plastisol Foaming Process. Decomposition of the Foaming Agent, Polymer Behavior in the Corresponding Temperature Range and Resulting Foam Properties
The decomposition of azodicarbonamide, used as foaming agent in PVC - plasticizer (1/1) plastisols was studied by DSC. Nineteen different plasticizers, all belonging to the ester family, two being polymeric (polyadipates), were compared. The temperature of maximum decomposition rate (in anisothermal regime at 5 K min-1 scanning rate), ranges between 434 and 452 K. The heat of decomposition ranges between 8.7 and 12.5 J g -1. Some trends of variation of these parameters appear significant and are discussed in terms of solvent (matrix) and viscosity effects on the decomposition reactions. The shear modulus at 1 Hz frequency was determined at the temperature of maximum rate of foaming agent decomposition, and differs significantly from a sample to another. The foam density was determined at ambient temperature and the volume fraction of bubbles was used as criterion to judge the efficiency of the foaming process. The results reveal the existence of an optimal shear modulus of the order of 2 kPa that corresponds roughly to plasticizer molar masses of the order of 450 ± 50 g mol-1. Heavier plasticizers, especially polymeric ones are too difficult to deform. Lighter plasticizers such as diethyl phthalate (DEP) deform too easily and presumably facilitate bubble collapse
Selective Gene Expression by Postnatal Electroporation during Olfactory Interneuron Neurogenesis
Neurogenesis persists in the olfactory system throughout life. The mechanisms of how new neurons are generated, how they integrate into circuits, and their role in coding remain mysteries. Here we report a technique that will greatly facilitate research into these questions. We found that electroporation can be used to robustly and selectively label progenitors in the Subventicular Zone. The approach was performed postnatally, without surgery, and with near 100% success rates. Labeling was found in all classes of interneurons in the olfactory bulb, persisted to adulthood and had no adverse effects. The broad utility of electroporation was demonstrated by encoding a calcium sensor and markers of intracellular organelles. The approach was found to be effective in wildtype and transgenic mice as well as rats. Given its versatility, robustness, and both time and cost effectiveness, this method offers a powerful new way to use genetic manipulation to understand adult neurogenesis
Oral Treatment with γ-Aminobutyric Acid Improves Glucose Tolerance and Insulin Sensitivity by Inhibiting Inflammation in High Fat Diet-Fed Mice
Adipocyte and β-cell dysfunction and macrophage-related chronic inflammation are critical for the development of obesity-related insulin resistance and type 2 diabetes mellitus (T2DM), which can be negatively regulated by Tregs. Our previous studies and those of others have shown that activation of γ-aminobutyric acid (GABA) receptors inhibits inflammation in mice. However, whether GABA could modulate high fat diet (HFD)-induced obesity, glucose intolerance and insulin resistance has not been explored. Here, we show that although oral treatment with GABA does not affect water and food consumption it inhibits the HFD-induced gain in body weights in C57BL/6 mice. Furthermore, oral treatment with GABA significantly reduced the concentrations of fasting blood glucose, and improved glucose tolerance and insulin sensitivity in the HFD-fed mice. More importantly, after the onset of obesity and T2DM, oral treatment with GABA inhibited the continual HFD-induced gain in body weights, reduced the concentrations of fasting blood glucose and improved glucose tolerance and insulin sensitivity in mice. In addition, oral treatment with GABA reduced the epididymal fat mass, adipocyte size, and the frequency of macrophage infiltrates in the adipose tissues of HFD-fed mice. Notably, oral treatment with GABA significantly increased the frequency of CD4+Foxp3+ Tregs in mice. Collectively, our data indicated that activation of peripheral GABA receptors inhibited the HFD-induced glucose intolerance, insulin resistance, and obesity by inhibiting obesity-related inflammation and up-regulating Treg responses in vivo. Given that GABA is safe for human consumption, activators of GABA receptors may be valuable for the prevention of obesity and intervention of T2DM in the clinic
- …