1,747 research outputs found

    Proton decay and new contribution to 0ν2β decay in SO(10) with low-mass Z′ boson, observable n − n ¯ nn n-\overline{n} oscillation, lepton flavor violation, and rare kaon decay

    Full text link

    Genetic and antigenic variation of foot-and-mouth disease virus during persistent infection in naturally infected cattle and Asian buffalo in India

    Full text link
    Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. The role of foot-and-mouth disease virus (FMDV) persistently infected ruminants in initiating new outbreaks remains controversial, and the perceived threat posed by such animals hinders international trade in FMD-endemic countries. In this study we report longitudinal analyses of genetic and antigenic variations of FMDV serotype O/ME-SA/Ind2001d sublineage during naturally occurring, persistent infection in cattle and buffalo at an organised dairy farm in India. The proportion of animals from which FMDV RNA was recovered was not significantly different between convalescent (post-clinical) and sub-clinically infected animals or between cattle and buffalo across the sampling period. However, infectious virus was isolated from a higher proportion of buffalo samples and for a longer duration compared to cattle. Analysis of the P1 sequences from recovered viruses indicated fixation of mutations at the rate of 1.816 x 10-2substitution/site/year (s/s/y) (95% CI 1.362–2.31 x 10−2 s/s/y). However, the majority of point mutations were transitional substitutions. Within individual animals, the mean dN/dS (ω) value for the P1 region varied from 0.076 to 0.357, suggesting the selection pressure acting on viral genomes differed substantially across individual animals. Statistical parsimony analysis indicated that all of the virus isolates from carrier animals originated from the outbreak virus. The antigenic relationship value as determined by 2D-VNT assay revealed fluctuation of antigenic variants within and between carrier animals during the carrier state which suggested that some carrier viruses had diverged substantially from the protection provided by the vaccine strain. This study contributes to understanding the extent of within-host and within-herd evolution that occurs during the carrier state of FMDV

    An SO(10) Grand Unified Theory of Flavor

    Get PDF
    We present a supersymmetric SO(10) grand unified theory (GUT) of flavor based on an S4S_4 family symmetry. It makes use of our recent proposal to use SO(10) with type II seesaw mechanism for neutrino masses combined with a simple ansatz that the dominant Yukawa matrix (the {\bf 10}-Higgs coupling to matter) has rank one. In this paper, we show how the rank one model can arise within some plausible assumptions as an effective field theory from vectorlike {\bf 16} dimensional matter fields with masses above the GUT scale. In order to obtain the desired fermion flavor texture we use S4S_4 flavon multiplets which acquire vevs in the ground state of the theory. By supplementing the S4S_4 theory with an additional discrete symmetry, we find that the flavon vacuum field alignments take a discrete set of values provided some of the higher dimensional couplings are small. Choosing a particular set of these vacuum alignments appears to lead to an unified understanding of observed quark-lepton flavor: (i) the lepton mixing matrix that is dominantly tri-bi-maximal with small corrections related to quark mixings; (ii) quark lepton mass relations at GUT scale: mbmτm_b\simeq m_{\tau} and mμ3msm_\mu\simeq 3 m_s and (iii) the solar to atmospheric neutrino mass ratio m/matmθCabibbom_\odot/m_{\rm atm}\simeq \theta_{\rm Cabibbo} in agreement with observations. The model predicts the neutrino mixing parameter, Ue3θCabibbo/(32)0.05U_{e3} \simeq \theta_{\rm Cabibbo}/(3\sqrt2) \sim 0.05, which should be observable in planned long baseline experiments.Comment: Final version of the paper as it will appear in JHEP

    The Interplay Between GUT and Flavour Symmetries in a Pati-Salam x S4 Model

    Get PDF
    Both Grand Unified symmetries and discrete flavour symmetries are appealing ways to describe apparent structures in the gauge and flavour sectors of the Standard Model. Both symmetries put constraints on the high energy behaviour of the theory. This can give rise to unexpected interplay when building models that possess both symmetries. We investigate on the possibility to combine a Pati-Salam model with the discrete flavour symmetry S4S_4 that gives rise to quark-lepton complementarity. Under appropriate assumptions at the GUT scale, the model reproduces fermion masses and mixings both in the quark and in the lepton sectors. We show that in particular the Higgs sector and the running Yukawa couplings are strongly affected by the combined constraints of the Grand Unified and family symmetries. This in turn reduces the phenomenologically viable parameter space, with high energy mass scales confined to a small region and some parameters in the neutrino sector slightly unnatural. In the allowed regions, we can reproduce the quark masses and the CKM matrix. In the lepton sector, we reproduce the charged lepton masses, including bottom-tau unification and the Georgi-Jarlskog relation as well as the two known angles of the PMNS matrix. The neutrino mass spectrum can present a normal or an inverse hierarchy, and only allowing the neutrino parameters to spread into a range of values between λ2\lambda^{-2} and λ2\lambda^2, with λ0.2\lambda\simeq0.2. Finally, our model suggests that the reactor mixing angle is close to its current experimental bound.Comment: 62 pages, 4 figures; references added, version accepted for publication in JHE

    Mesoscale Atmospheric Transport of Ragweed Pollen Allergens from Infected to Uninfected Areas

    Get PDF
    Allergenic ragweed (Ambrosia spp.) pollen grains, after being released from anthers, can be dispersed by air masses far from their source. However, the action of air temperature,humidity and solar radiation on pollen grains in the atmosphere could impact on the ability of long distance transported (LDT) pollen to maintain allergenic potency. Here, we report that the major allergen of Ambrosia artemisiifolia pollen (Amb a 1) collected in ambient air during episodes of LDT still have immunoreactive properties. The amount of Amb a 1 found in LDT ragweed pollen grains was not constant and varied between episodes. In addition to allergens in pollen sized particles, we detected reactive Amb a 1 in subpollen sized respirable particles. These findings suggest that ragweed pollen grains have the potential to cause allergic reactions, not only in the heavily infested areas but, due to LDT episodes, also in the regions unaffected by ragweed populations

    Search for rare quark-annihilation decays, B --> Ds(*) Phi

    Full text link
    We report on searches for B- --> Ds- Phi and B- --> Ds*- Phi. In the context of the Standard Model, these decays are expected to be highly suppressed since they proceed through annihilation of the b and u-bar quarks in the B- meson. Our results are based on 234 million Upsilon(4S) --> B Bbar decays collected with the BABAR detector at SLAC. We find no evidence for these decays, and we set Bayesian 90% confidence level upper limits on the branching fractions BF(B- --> Ds- Phi) Ds*- Phi)<1.2x10^(-5). These results are consistent with Standard Model expectations.Comment: 8 pages, 3 postscript figues, submitted to Phys. Rev. D (Rapid Communications

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
    corecore