66 research outputs found

    Relative Effectiveness of Mating Success and Sperm Competition at Eliminating Deleterious Mutations in Drosophila melanogaster

    Get PDF
    Condition-dependence theory predicts that sexual selection will facilitate adaptation by selecting against deleterious mutations that affect the expression of sexually selected traits indirectly via condition. Recent empirical studies have provided support for this prediction; however, their results do not elucidate the relative effects of pre- and postcopulatory sexual selection on deleterious mutations. We used the Drosophila melanogaster model system to discern the relative contributions of pre- and postcopulatory processes to selection against deleterious mutations. To assess second-male ejaculate competition success (P2; measured as the proportion of offspring attributable to the experimental male) and mating success, mutant and wild-type male D. melanogaster were given the opportunity to mate with females that were previously mated to a standard competitor male. This process was repeated for males subjected to a diet quality manipulation to test for effects of environmentally-manipulated condition on P2 and mating success. While none of the tested mutations affected P2, there was a clear effect of condition. Conversely, several of the mutations affected mating success, while condition showed no effect. Our results suggest that precopulatory selection may be more effective than postcopulatory selection at removing deleterious mutations. The opposite result obtained for our diet manipulation points to an interesting discrepancy between environmental and genetic manipulations of condition, which may be explained by the multidimensionality of condition. Establishing whether the various stages of sexual selection affect deleterious mutations differently, and to what extent, remains an important issue to resolve

    An Observational Cohort Comparison of Facilitators of Retention in Care and Adherence to Anti-Eetroviral Therapy at an HIV Treatment Center in Kenya

    Get PDF
    BACKGROUND: Most HIV treatment programs in resource-limited settings utilize multiple facilitators of adherence and retention in care but there is little data on the efficacy of these methods. We performed an observational cohort analysis of a treatment program in Kenya to assess which program components promote adherence and retention in HIV care in East Africa. METHODS: Patients initiating ART at A.I.C. Kijabe Hospital were prospectively enrolled in an observational study. Kijabe has an intensive program to promote adherence and retention in care during the first 6 months of ART that incorporates the following facilitators: home visits by community health workers, community based support groups, pharmacy counseling, and unannounced pill counts by clinicians. The primary endpoint was time to treatment failure, defined as a detectable HIV-1 viral load; discontinuation of ART; death; or loss to follow-up. Time to treatment failure for each facilitator was calculated using Kaplan-Meier analysis. The relative effects of the facilitators were determined by the Cox Proportional Hazards Model. RESULTS: 301 patients were enrolled. Time to treatment failure was longer in patients participating in support groups (448 days vs. 337 days, P<0.001), pharmacy counseling (480 days vs. 386 days, P = 0.002), pill counts (482 days vs. 189 days, P<0.001) and home visits (485 days vs. 426 days, P = 0.024). Better adherence was seen with support groups (89% vs. 82%, P = 0.05) and pill counts (89% vs. 75%, P = 0.02). Multivariate analysis using the Cox Model found significant reductions in risk of treatment failure associated with pill counts (HR = 0.19, P<0.001) and support groups (HR = 0.43, P = 0.003). CONCLUSION: Unannounced pill counts by the clinician and community based support groups were associated with better long term treatment success and with better adherence

    Macro-to-Micro Structural Proteomics: Native Source Proteins for High-Throughput Crystallization

    Get PDF
    Structural biology and structural genomics projects routinely rely on recombinantly expressed proteins, but many proteins and complexes are difficult to obtain by this approach. We investigated native source proteins for high-throughput protein crystallography applications. The Escherichia coli proteome was fractionated, purified, crystallized, and structurally characterized. Macro-scale fermentation and fractionation were used to subdivide the soluble proteome into 408 unique fractions of which 295 fractions yielded crystals in microfluidic crystallization chips. Of the 295 crystals, 152 were selected for optimization, diffraction screening, and data collection. Twenty-three structures were determined, four of which were novel. This study demonstrates the utility of native source proteins for high-throughput crystallography

    Balanced Synaptic Input Shapes the Correlation between Neural Spike Trains

    Get PDF
    Stimulus properties, attention, and behavioral context influence correlations between the spike times produced by a pair of neurons. However, the biophysical mechanisms that modulate these correlations are poorly understood. With a combined theoretical and experimental approach, we show that the rate of balanced excitatory and inhibitory synaptic input modulates the magnitude and timescale of pairwise spike train correlation. High rate synaptic inputs promote spike time synchrony rather than long timescale spike rate correlations, while low rate synaptic inputs produce opposite results. This correlation shaping is due to a combination of enhanced high frequency input transfer and reduced firing rate gain in the high input rate state compared to the low state. Our study extends neural modulation from single neuron responses to population activity, a necessary step in understanding how the dynamics and processing of neural activity change across distinct brain states

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Daily magnesium fluxes regulate cellular timekeeping and energy balance

    Get PDF
    Circadian clocks are fundamental to the biology of most eukaryotes, coordinating behaviour and physiology to resonate with the environmental cycle of day and night through complex networks of clock-controlled genes1, 2, 3. A fundamental knowledge gap exists, however, between circadian gene expression cycles and the biochemical mechanisms that ultimately facilitate circadian regulation of cell biology4, 5. Here we report circadian rhythms in the intracellular concentration of magnesium ions, [Mg2+]i, which act as a cell-autonomous timekeeping component to determine key clock properties both in a human cell line and in a unicellular alga that diverged from each other more than 1 billion years ago6. Given the essential role of Mg2+ as a cofactor for ATP, a functional consequence of [Mg2+]i oscillations is dynamic regulation of cellular energy expenditure over the daily cycle. Mechanistically, we find that these rhythms provide bilateral feedback linking rhythmic metabolism to clock-controlled gene expression. The global regulation of nucleotide triphosphate turnover by intracellular Mg2+ availability has potential to impact upon many of the cell’s more than 600 MgATP-dependent enzymes7 and every cellular system where MgNTP hydrolysis becomes rate limiting. Indeed, we find that circadian control of translation by mTOR8 is regulated through [Mg2+]i oscillations. It will now be important to identify which additional biological processes are subject to this form of regulation in tissues of multicellular organisms such as plants and humans, in the context of health and disease

    Transancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders

    Get PDF
    Liability to alcohol dependence (AD) is heritable, but little is known about its complex polygenic architecture or its genetic relationship with other disorders. To discover loci associated with AD and characterize the relationship between AD and other psychiatric and behavioral outcomes, we carried out the largest genome-wide association study to date of DSM-IV-diagnosed AD. Genome-wide data on 14,904 individuals with AD and 37,944 controls from 28 case-control and family-based studies were meta-analyzed, stratified by genetic ancestry (European, n = 46,568; African, n = 6,280). Independent, genome-wide significant effects of different ADH1B variants were identified in European (rs1229984; P = 9.8 x 10(-13)) and African ancestries (rs2066702; P = 2.2 x 10(-9)). Significant genetic correlations were observed with 17 phenotypes, including schizophrenia, attention deficit-hyperactivity disorder, depression, and use of cigarettes and cannabis. The genetic underpinnings of AD only partially overlap with those for alcohol consumption, underscoring the genetic distinction between pathological and nonpathological drinking behaviors.Peer reviewe

    NO place to hide

    No full text

    Mass distribution in the 50-, 60-, and 70-MeV bremsstrahlung-induced fission of Th-232

    No full text
    The postneutron yields of various fission products in the mass regions of 77-153 have been determined in the 50-, 60-, and 70-MeV bremsstrahlung-induced fission of Th-232 by using a recoil catcher and an off-line gamma-ray spectrometric technique in the electron linac at the Pohang Accelerator Laboratory, Korea. The mass-yield distributions were obtained from the fission-product yield data using charge-distribution corrections. The fission yields of the present paper and the existing data from the Th-232(gamma, f) reaction at various energies are comparedwith those from the Th-232(n, f), the U-238(n, f), and the U-238(gamma, f) reactions. We observe that the yields of fission products for A = 133-134, A = 138-139, A = 143-144, and their complementary products in the above fissioning systems are higher than those of other fission products, which is explained based on the nuclear-structure effect. However, we observed that the yields of fission products for A = 133-134 were lower than those for A = 143-144 in the Th-232(gamma, f) reaction compared to those of the Th-232(n, f), U-238(n, f), and U-238(gamma, f) reactions. The yields of fission products for A = 133-134 increase, but those for A = 143-144 decrease with an increase in the excitation energy in the Th-232(gamma, f) and Th-232(n, f) reactions; however, those trends are reversed in the U-238(gamma, f) and U-238(n, f) reactions. The increasing or decreasing trends for the yields of fission products for A = 133-134 and A = 143-144 with the excitation energy in the Th-232(gamma, f), Th-232(n, f), U-238(n, f), and U-238(gamma, f) reactions are explained from the shell effect of the complementary products based on the static scission-point model and the standard I and II channels of bimodal fission. The peak-to-valley (P/V) ratio for the above fissioning systems also was obtained from the mass-yield distribution. The P/V ratio for the Th-232(gamma, f) and U-238(gamma, f) reactions at different energies from the present data and the existing literature data are interpreted to examine the role of excitation energy.open11119sciescopu
    corecore