109 research outputs found

    Updating Fearful Memories with Extinction Training during Reconsolidation: A Human Study Using Auditory Aversive Stimuli

    Get PDF
    Learning to fear danger in the environment is essential to survival, but dysregulation of the fear system is at the core of many anxiety disorders. As a consequence, a great interest has emerged in developing strategies for suppressing fear memories in maladaptive cases. Recent research has focused in the process of reconsolidation where memories become labile after being retrieved. In a behavioral manipulation, Schiller et al., (2010) reported that extinction training, administrated during memory reconsolidation, could erase fear responses. The implications of this study are crucial for the possible treatment of anxiety disorders without the administration of drugs. However, attempts to replicate this effect by other groups have been so far unsuccessful. We sought out to reproduce Schiller et al., (2010) findings in a different fear conditioning paradigm based on auditory aversive stimuli instead of electric shock. Following a within-subject design, participants were conditioned to two different sounds and skin conductance response (SCR) was recorded as a measure of fear. Our results demonstrated that only the conditioned stimulus that was reminded 10 minutes before extinction training did not reinstate a fear response after a reminder trial consisting of the presentation of the unconditioned stimuli. For the first time, we replicated Schiller et al., (2010) behavioral manipulation and extended it to an auditory fear conditioning paradigm

    Repeated Labilization-Reconsolidation Processes Strengthen Declarative Memory in Humans

    Get PDF
    The idea that memories are immutable after consolidation has been challenged. Several reports have shown that after the presentation of a specific reminder, reactivated old memories become labile and again susceptible to amnesic agents. Such vulnerability diminishes with the progress of time and implies a re-stabilization phase, usually referred to as reconsolidation. To date, the main findings describe the mechanisms associated with the labilization-reconsolidation process, but little is known about its functionality from a biological standpoint. Indeed, two functions have been proposed. One suggests that destabilization of the original memory after the reminder allows the integration of new information into the background of the original memory (memory updating), and the other suggests that the labilization-reconsolidation process strengthens the original memory (memory strengthening). We have previously reported the reconsolidation of human declarative memories, demonstrating memory updating in the framework of reconsolidation. Here we deal with the strengthening function attributed to the reconsolidation process. We triggered labilization-reconsolidation processes successively by repeated presentations of the proper reminder. Participants learned an association between five cue-syllables and their respective response-syllables. Twenty-four hours later, the paired-associate verbal memory was labilized by exposing the subjects to one, two or four reminders. The List-memory was evaluated on Day 3 showing that the memory was improved when at least a second reminder was presented in the time window of the first labilization-reconsolidation process prompted by the earlier reminder. However, the improvement effect was revealed on Day 3, only when at least two reminders were presented on Day2 and not as a consequence of only retrieval. Therefore, we propose central concepts for the reconsolidation process, emphasizing its biological role and the parametrical constrains for this function to be operative

    A Mismatch-Based Model for Memory Reconsolidation and Extinction in Attractor Networks

    Get PDF
    The processes of memory reconsolidation and extinction have received increasing attention in recent experimental research, as their potential clinical applications begin to be uncovered. A number of studies suggest that amnestic drugs injected after reexposure to a learning context can disrupt either of the two processes, depending on the behavioral protocol employed. Hypothesizing that reconsolidation represents updating of a memory trace in the hippocampus, while extinction represents formation of a new trace, we have built a neural network model in which either simple retrieval, reconsolidation or extinction of a stored attractor can occur upon contextual reexposure, depending on the similarity between the representations of the original learning and reexposure sessions. This is achieved by assuming that independent mechanisms mediate Hebbian-like synaptic strengthening and mismatch-driven labilization of synaptic changes, with protein synthesis inhibition preferentially affecting the former. Our framework provides a unified mechanistic explanation for experimental data showing (a) the effect of reexposure duration on the occurrence of reconsolidation or extinction and (b) the requirement of memory updating during reexposure to drive reconsolidation

    Blocking Mineralocorticoid Receptors prior to Retrieval Reduces Contextual Fear Memory in Mice

    Get PDF
    BACKGROUND: Corticosteroid hormones regulate appraisal and consolidation of information via mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) respectively. How activation of these receptors modulates retrieval of fearful information and the subsequent expression of fear is largely unknown. We tested here whether blockade of MRs or GRs during retrieval also affects subsequent expression of fear memory. METHODOLOGY/PRINCIPAL FINDINGS: Mice were trained in contextual or tone cue fear conditioning paradigms, by pairing mild foot shocks with a particular context or tone respectively. Twenty-four hours after training, context-conditioned animals were re-exposed to the context for 3 or 30 minutes (day 2); tone-conditioned animals were placed in a different context and re-exposed to one or six tones. Twenty-four hours (day 3) and one month later, freezing behavior to the aversive context/tone was scored again. MR or GR blockade was achieved by giving spironolactone or RU486 subcutaneously one hour before retrieval on day 2. Spironolactone administered prior to brief context re-exposure reduced freezing behavior during retrieval and 24 hours later, but not one month later. Administration of spironolactone without retrieval of the context or immediately after retrieval on day 2 did not reduce freezing on day 3. Re-exposure to the context for 30 minutes on day 2 significantly reduced freezing on day 3 and one month later, but freezing was not further reduced by spironolactone. Administration of spironolactone prior to tone-cue re-exposure on day 2 did not affect freezing behavior. Treatment with RU486 prior to re-exposure did not affect context or tone-cue fear memories at any time point. CONCLUSIONS/SIGNIFICANCE: We conclude that MR blockade prior to retrieval strongly reduces the expression of contextual fear, implying that MRs, rather than GRs, play an important role in retrieval of emotional information and subsequent fear expression

    Bidirectional Modulation of Alcohol-Associated Memory Reconsolidation through Manipulation of Adrenergic Signaling.

    Get PDF
    Alcohol addiction is a problem of great societal concern, for which there is scope to improve current treatments. One potential new treatment for alcohol addiction is based on disrupting the reconsolidation of the maladaptive Pavlovian memories that can precipitate relapse to drug-seeking behavior. In alcohol self-administering rats, we investigated the effects of bidirectionally modulating adrenergic signaling on the strength of a Pavlovian cue-alcohol memory, using a behavioral procedure that isolates the specific contribution of one maladaptive Pavlovian memory to relapse, the acquisition of a new alcohol-seeking response for an alcohol-associated conditioned reinforcer. The β-adrenergic receptor antagonist propranolol, administered in conjunction with memory reactivation, persistently disrupted the memory that underlies the capacity of a previously alcohol-associated cue to act as a conditioned reinforcer. By contrast, enhancement of adrenergic signaling by administration of the adrenergic prodrug dipivefrin at reactivation increased the strength of the cue-alcohol memory and potentiated alcohol seeking. These data demonstrate the importance of adrenergic signaling in alcohol-associated memory reconsolidation, and suggest a pharmacological target for treatments aiming to prevent relapse through the disruption of maladaptive memories.This work was supported by a UK Medical Research Council Programme Grant (G1002231) to BJE and ALM and was conducted in the Behavioural and Clinical Neuroscience Institute (BCNI), an initiative jointly funded by the MRC and the Wellcome Trust. MJWS was supported by an MRC Doctoral Training Grant and the James Baird Fund at the Medical School of the University of Cambridge. ALM was partly supported by a BCNI lectureship and the Ferreras-Willetts Fellowship from Downing College, Cambridge.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/npp.2015.24

    Captive-born collared peccary (Pecari tajacu, Tayassuidae) fails to discriminate between predator and non-predator models

    Get PDF
    Captive animals may lose the ability to recognize their natural predators, making conservation programs more susceptible to failure if such animals are released into the wild. Collared peccaries are American tayassuids that are vulnerable to local extinction in certain areas, and conservation programs are being conducted. Captive-born peccaries are intended for release into the wild in Minas Gerais state, southeastern Brazil. In this study, we tested the ability of two groups of captive-born collared peccaries to recognize their predators and if they were habituated to humans. Recognition tests were performed using models of predators (canids and felids) and non-predators animals, as well as control objects, such as a plastic chair; a human was also presented to the peccaries, and tested as a separate stimulus. Anti-predator defensive responses such as fleeing and threatening displayswere not observed in response to predator models. Predator detection behaviors both from visual and olfactory cues were displayed, although they were not specifically targeted at predator models. These results indicate that collared peccaries were unable to recognize model predators. Habituation effects, particularly on anti-predator behaviors, were observed both with a 1-h model presentation and across testing days. Behavioral responses to humans did not differ from those to other models. Thus, if these animals were to be released into the wild, they should undergo anti-predator training sessions to enhance their chances of survival

    Dermatite seborreica

    Full text link

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore