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ABSTRACT 

Alcohol addiction is a problem of great societal concern, for which there is scope to improve current 

treatments. One potential new treatment for alcohol addiction is based on disrupting the 

reconsolidation of the maladaptive pavlovian memories that can precipitate relapse to drug-seeking 

behavior. In alcohol self-administering rats, we investigated the effects of bidirectionally modulating 

adrenergic signaling on the strength of a pavlovian cue-alcohol memory, using a behavioral 

procedure that isolates the specific contribution of one maladaptive pavlovian memory to relapse, 

the acquisition of a new alcohol-seeking response for an alcohol-associated conditioned reinforcer. 

The β-adrenergic receptor antagonist propranolol, administered in conjunction with memory 

reactivation, persistently disrupted the memory that underlies the capacity of a previously alcohol-

associated cue to act as a conditioned reinforcer. By contrast, enhancement of adrenergic signaling 

by administration of the adrenergic prodrug dipivefrin at reactivation increased the strength of the 

cue-alcohol memory and potentiated alcohol seeking. These data demonstrate the importance of 

adrenergic signaling in alcohol-associated memory reconsolidation, and suggest a pharmacological 

target for treatments aiming to prevent relapse through the disruption of maladaptive memories. 
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INTRODUCTION 

Memory reconsolidation – the process by which memories are destabilized following retrieval, and 

subsequently restabilized to persist in the brain – has received much attention for its potential utility 

in the development of treatments for neuropsychiatric disorders in which maladaptive emotional 

memories play a key role (Diergaarde et al, 2008; Milton, 2013; Milton and Everitt, 2010; 

Torregrossa and Taylor, 2013). One such disorder is drug addiction; this chronic relapsing disorder, in 

which individuals lose control of their drug use, is characterized by a sustained risk of relapse during 

abstinence (Anthony et al, 1994; Tiffany, 1990). Relapse to drug use can be influenced by a number 

of factors, including a drinking lapse, i.e. drug-induced reinstatement (de Wit, 1996; Lê et al, 1998), 

stress (Erb et al, 1996; Lê et al, 1998; Shaham and Stewart, 1996) and, importantly for the current 

work, environmental cues that have previously been associated with drug use in a pavlovian manner 

(de Wit and Stewart, 1981). These pavlovian conditioned stimuli (CSs) that precipitate relapse to 

drug-seeking behavior activate maladaptive emotional memories and elicit craving and drug-

seeking; thus disrupting their reconsolidation by the administration of an appropriate amnestic 

agent could be a useful therapeutic strategy. 

 One such amnestic agent that has received attention is the β-adrenergic receptor antagonist 

propranolol. It has long been known that the adrenergic system influences the consolidation of 

emotional memories, with an enhancement of signaling at adrenergic receptors increasing memory 

strength (Crowe et al, 1990; Ferry et al, 1999; Hatfield and McGaugh, 1999; Introini-Collison and 

McGaugh, 1986; Sternberg et al, 1985; Sternberg et al, 1986) and the administration of antagonists 

at these receptors impairing memory consolidation (Hatfield et al, 1999; Introini-Collison et al, 1992; 

Sternberg et al, 1985; Sternberg et al, 1986). These effects, in addition to those on synaptic plasticity 

in vivo (Bliss et al, 1983; Dahl et al, 1983) and in slice preparations (Ferry et al, 1997; Stanton and 

Sarvey, 1985) led to the adrenergic system being one of the first targets of investigation in the field 

of memory reconsolidation. Following early demonstrations that antagonism at β-adrenergic 
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receptors could disrupt the reconsolidation of memories underlying auditory conditioned fear in rats 

(Dębiec and LeDoux, 2004), it was demonstrated that β-adrenergic receptor antagonism with 

propranolol also disrupted the reconsolidation of drug-associated memories in cocaine-conditioned 

(Fricks-Gleason and Marshall, 2008) and morphine-conditioned (Robinson and Franklin, 2007; 

Robinson and Franklin, 2010) place preference procedures, and in procedures investigating the 

capacity of previously cocaine-associated cues to elicit and maintain drug seeking (Milton et al, 

2008). However, these effects have not been universally replicated, as the memories underlying 

place preference in chronically morphine-treated rats appear insensitive to propranolol at 

reactivation (Robinson et al, 2011).  

The reconsolidation of alcohol-associated memories has been less well-studied than for 

other drugs of abuse, despite alcohol abuse and addiction presenting a significant societal burden 

(UK Home Office, 2012). Memories relevant to relapse in alcohol addiction do appear to undergo 

reconsolidation (Barak et al, 2013; von der Goltz et al, 2009; Wouda et al, 2010), but there have 

been inconsistent reports in the literature regarding the dependence of this process on β-adrenergic 

signaling. Those few studies that have investigated the effects of propranolol on alcohol-associated 

memories have shown that propranolol does not disrupt the reconsolidation of the memories 

underlying alcohol-conditioned place preference (Font and Cunningham, 2012), but does disrupt the 

reconsolidation of pavlovian memories that contribute to cue-induced relapse to alcohol-seeking 

(Wouda et al, 2010). As cue-induced relapse can be behaviorally deconstructed into the constituent 

processes of pavlovian conditioned approach, conditioned motivation and conditioned 

reinforcement (the 'three routes to relapse' - see Milton et al, 2010), this latter report appears to be 

inconsistent with the finding that propranolol does not disrupt the reconsolidation of the memories 

underlying pavlovian conditioned approach or conditioned motivation for alcohol-associated cues 

(Milton et al, 2012). However, this may reflect differential dependence of the reconsolidation of the 

memories underlying these processes on β-adrenergic signaling. Propranolol has also been shown 

ineffective at disrupting the reconsolidation of the memories underlying pavlovian conditioned 
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approach and conditioned motivation for sucrose-associated cues (Lee and Everitt, 2008), yet it 

impairs the reconsolidation of the memory allowing a sucrose-associated cue to act as a conditioned 

reinforcer (Milton et al, 2008). It has also been shown previously that manipulations that fail to 

impair the reconsolidation of the memories underlying conditioned place preference may disrupt 

the memories that underlie conditioned reinforcement (Théberge et al, 2010). Thus, a key question 

is whether β-adrenergic signaling is required for the reconsolidation of the pavlovian memory 

underlying the capacity of a previously alcohol-associated cue to act as a conditioned reinforcer; if it 

is, then this may provide an explanation for why propranolol disrupts the reconsolidation of the 

memories underlying some, but not all, measures of relapse to alcohol-seeking.  

Therefore, in this study, we investigated the effects of adrenergic manipulations on the 

reconsolidation of an alcohol-associated cue memory and its capacity to act as a conditioned 

reinforcer. We hypothesized that adrenergic transmission within the brain would be required for the 

restabilization of a cue-alcohol memory, and its ability to act subsequently as a conditioned 

reinforcer. We tested this hypothesis using the acquisition of a new instrumental seeking response 

for conditioned reinforcement (ANR), and by comparing the effects of administering at reactivation 

the lipophilic β-adrenergic receptor antagonist propranolol versus the hydrophilic (lipophobic) β-

adrenergic receptor antagonist nadolol, which does not cross the blood-brain barrier. We further 

hypothesized that an enhancement of adrenergic signaling would enhance the reconsolidation of an 

alcohol-associated cue memory, thereby potentiating its impact on alcohol seeking; we tested this 

hypothesis in a separate experiment by administering the adrenergic prodrug dipivefrin (Kaback et 

al, 1976) prior to memory reactivation.  

MATERIALS AND METHODS 

Subjects 

Subjects were 113 experimentally naïve male Lister-Hooded rats (Charles River, Bicester, UK) housed 

in pairs in a vivarium on a reversed light-dark cycle (lights on at 19:00) and weighing between 201-
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337 g at the start of the experiments. Subjects were food restricted, though not deprived, and 

maintained at least 90% of their free-feeding weight. Animals were fed after training or testing each 

day. Access to water was ad libitum except for when inside the conditioning chambers, and for the 

first two days of saccharin fading, when animals were water restricted (without food restriction) for 

22 hrs per day. All procedures were conducted in accordance with the UK Animals (Scientific 

Procedures) Act 1986. 

Habituation to ethanol drinking (saccharin-fading procedure) 

Rats were habituated to ethanol drinking using a modified version of the sucrose fading procedure, 

as described previously (Milton et al, 2012). Briefly, they were placed in individual cages containing a 

single bottle, and were given 1-hour long access sessions daily for a total of 14 days. The fluid 

contained in the bottle varied across sessions: 4 sessions of 0.2% saccharin, followed by 2 sessions of 

0.2% saccharin + 5% ethanol, then 2 sessions of 5% ethanol, 2 sessions of 0.2% saccharin + 8% 

ethanol, 2 sessions of 8% ethanol, and finally 2 sessions of 0.2% saccharin + 10% ethanol (see Figure 

S1). Fluid intake in ml was estimated by weighing the bottles before and after each session. 

Following habituation to ethanol drinking, all animals progressed on to ethanol self-administration 

training. 

Behavioral procedures 

In order to assess the integrity of the CS-ethanol memory following our experimental manipulations 

at reactivation, we used the acquisition of a new instrumental response (ANR) procedure (as used to 

investigate the reconsolidation of cocaine- and sucrose-associated memories in Milton et al, 2008) 

to assess whether the previously ethanol-associated CS was able subsequently to act as a 

conditioned reinforcer (Figures 1A and 2A). Briefly, in the first phase of the experiment animals were 

trained to self-administer ethanol with an instrumental response (a nosepoke), which led to the 

simultaneous presentation of a light, the pavlovian conditioned stimulus (CS). Following the 
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experimental manipulations of memory at reactivation, animals were tested repeatedly in the 

second phase of the experiment for the acquisition of a novel instrumental response (lever pressing) 

for the presentation of the CS alone. Pavlovian CSs that are capable of acting as conditioned 

reinforcers, because of their previous association with the ethanol reinforcer, support the 

acquisition of a new instrumental response, while CSs that are not (or are no longer) associated with 

primary reinforcement cannot. Thus, the ANR procedure provides a stringent assay for a specific 

psychological process that can only be supported when the CS-ethanol memory is intact. 

All behavioral procedures were conducted during the animals’ dark cycle. Rats were trained 

in conditioning chambers (Med Associates Inc., St Albans, Vermont) to make a nosepoke response 

into a central magazine for presentation of a 0.1 ml of a 10% (v/v) ethanol reinforcer (Sigma-Aldrich, 

Gillingham, UK) which was associated with a 20-s light CS (presented on the same side assigned to 

the ‘inactive’ lever during testing, counterbalanced across rats) on a fixed-ratio (FR) 1 schedule. Rats 

were trained over 9 sessions, with the session terminating after 60 minutes or a maximum of 30 CS-

ethanol pairings per session, whichever occurred first.  

The day after the completion of training, rats received systemic injections of drugs targeting 

the adrenergic system 30 minutes prior to the memory reactivation session. During this session, 

nosepokes led to the presentation of the light CS and activation of the pump that delivered ethanol 

during training on an FR1 schedule, but no ethanol was delivered. The primary reinforcer was 

omitted at reactivation because it has been hypothesized (Pedreira et al, 2004) and is becoming 

increasingly supported (Forcato et al, 2009; Sevenster et al, 2013) that memory destabilization 

processes are initiated by a ‘mismatch’ between what is expected by the individual and what occurs 

during the reactivation session. For this reason the session also terminated ‘early’, after 15 minutes. 

During this time the rats were limited to a maximum of 30 CS presentations, but this limit was not 

usually reached (see Figures 1D and 2D for the number of CS presentations achieved).  
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 Testing began 24h after the memory reactivation session. The rats were returned to the 

same conditioning chambers, but in this phase they were presented with two novel levers (left and 

right of the central magazine). Depression of the ‘active’ lever led to an abbreviated (1-s) 

presentation of the light CS on a variable ratio schedule (VR1-3), while depression of the ‘inactive’ 

lever had no programmed consequence and acted as a control for general activity. The light CS was 

always presented on the side opposite to the ‘active’ lever, to avoid pavlovian conditioned approach 

contributing to lever pressing. No ethanol was available during these sessions. Rats were returned to 

the chambers for eight 30-minute sessions, conducted 1, 2, 5 and 8 days following memory 

reactivation, and then weekly following day 8 (on days 15, 22, 29 and 36). Lever presses and 

nosepokes were recorded by computer. 

Systemic drug administration 

Experiment 1 – The effects of centrally active vs. peripherally active β-adrenergic receptor 

antagonists on the reconsolidation of a CS-alcohol memory 

All rats received intraperitoneal (i.p.) injections of the lipophilic β-adrenergic receptor antagonist 

propranolol (PRO, 10 mg kg-1; Sigma-Aldrich), the hydrophilic β-adrenergic receptor antagonist 

nadolol (NAD, 20 mg kg-1; Sigma-Aldrich) or saline vehicle (VEH). Animals that underwent memory 

reactivation were injected intraperitoneally in a novel room and returned to the home cage for 30 

minutes before the memory reactivation session; non-reactivated control groups received injections 

in the novel room and were not re-exposed to the conditioning chambers. The dose of propranolol 

used has been shown previously to disrupt the reconsolidation of pavlovian CS-fear (Dębiec et al, 

2004) and pavlovian CS-sucrose (Milton et al, 2008) memories. Although nadolol is reported to have 

higher efficacy at β-adrenergic receptors than propranolol (Escoubet et al, 1986) a higher dose of 

nadolol was used here to ensure that a behaviorally effective dose was used, and to be consistent 

with previous literature (Robinson et al, 2007). 
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Experiment 2 – The effects of the adrenergic prodrug dipivefrin on the reconsolidation of a CS-alcohol 

memory 

Animals received i.p. injections of either the adrenergic prodrug dipivefrin hydrochloride (DIP, 10 μg 

kg-1, US Pharmacopeial Convention, Rockville, MD, USA) or its saline vehicle 10 minutes prior to the 

memory reactivation session. This dose of DIP has been shown to enhance the consolidation of 

inhibitory avoidance memory when administered immediately after training (Introini-Collison et al, 

1992).  Non-reactivated animals received the same dose of DIP but were returned to the home cage 

after the injection. 

Sample size, statistical power, and randomization 

A priori sample size calculations were not conducted but the number of subjects per group was 

chosen by reference to previous research. Data was collected over an extended period of time, with 

6-8 animals being run within a single squad. Data from different squads were pooled for analysis, 

with final numbers per group of: (Experiment 1) reactivated VEH=22, reactivated PRO=11, 

reactivated NAD=9, non-reactivated VEH=13, non-reactivated PRO=13; (Experiment 2) reactivated 

VEH=13, reactivated DIP=14, non-reactivated VEH=9, non-reactivated DIP=9. Subjects were 

pseudorandomly assigned to experimental groups, such that drug assignments were made according 

to training performance (i.e. groups were matched for nosepoking performance and the numbers of 

CSs and ethanol reinforcers earned during training).  

Data collection and statistical analysis 

Data were recorded automatically by the Conditioned Reinforcement program (Cardinal, 2005) 

running within the Whisker Control server (Cardinal, 2000). As the data were collected by computer, 

blinding to experimental group was not required.  

Training and testing data were analyzed using repeated measures ANOVA, and reactivation 

data were analyzed using a one-way ANOVA. The normality assumption of ANOVA was checked with 



Schramm et al. 10 
 

the Shapiro-Wilk test, and if this indicated that the data were not normally distributed then they 

were transformed. The lever pressing and nosepoke data from the ANR phase of the experiment 

were not normally distributed, so were transformed using the Box-Cox method with λ=0.5; i.e. 

square-root transformed. Following this transformation, the majority of the lever press data satisfied 

the assumption of normality [p>0.05]. 

 If Mauchly’s test indicated that the assumption of sphericity had been violated, then the 

Greenhouse-Geisser correction was applied where ε<0.75, and the Huynh-Feldt correction applied 

where ε>0.75, as recommended by Cardinal and Aitken(2006). The α level was 0.05 for all analyses, 

and p values are two-tailed. Where appropriate, subsequent ANOVAs and Šidák-corrected pairwise 

comparisons were conducted to investigate specific a priori hypotheses.  

 

RESULTS 

Experiment 1 

Administration of the lipophilic β-adrenergic receptor antagonist propranolol, but not the hydrophilic 

β-adrenergic receptor antagonist nadolol, prior to memory reactivation disrupted the CS-alcohol 

memory that subsequently supports conditioned reinforcement 

Administration of the lipophilic β-adrenergic receptor antagonist propranolol prior to memory 

reactivation impaired the capacity of a previously alcohol-associated CS to act as a conditioned 

reinforcer, in a reactivation-dependent manner [Figure 1B; Drug x Reactivation: F(1,55)=5.46, p=0.023, 

η2=0.09]. Animals that received VEH readily acquired the new instrumental response, increasing 

responding on the active lever across the eight test sessions [Lever: F(1,33)=17.9, p<0.001, η2=0.35; 

Lever x Session: F(5.4,180)=4.99, p<0.001, η2=0.13] with no differences in performance between 

reactivated (Figure 1B) and non-reactivated (Figure 1C) groups [Reactivation: F<1; Lever x 
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Reactivation: F<1; Lever x Session x Reactivation: F(5.4,180)=1.21, p=0.30]. By contrast, animals that 

received PRO prior to reactivation responded less than animals receiving VEH prior to reactivation 

[Drug: F(1,31)=5.45, p=0.026, η2=0.15] and responded less than animals that received PRO without 

reactivation [Reactivation: F(1,22)=9.10, p=0.006, η2=0.29]. While non-reactivated, PRO-treated 

animals responded more on the CS-producing active lever over the course of testing [Lever: 

F(1,12)=6.79, p=0.023, η2=0.36; Lever x Session: F(3.1,37)=5.42, p=0.003, η2=0.31], animals given PRO 

prior to reactivation did not bias their responding towards the active lever over the course of testing 

[Lever: F(1,10)=2.17, p=0.17; Lever x Session: F<1]. Thus systemic propranolol, which readily crosses 

the blood-brain barrier, disrupted the reconsolidation of a CS-alcohol memory that subsequently 

allowed the CS to act as a conditioned reinforcer.  

By contrast, administration of the hydrophilic (lipophobic) β-adrenergic receptor antagonist 

nadolol, which does not cross the blood-brain barrier, at reactivation did not affect the capacity of 

the CS to act subsequently as a conditioned reinforcer (Figure 1B), as the reactivated NAD group did 

not differ in performance from the reactivated VEH group [Drug: F<1; Lever x Drug: F<1]. Therefore, 

β-adrenergic receptor antagonism only disrupted the reconsolidation of the CS-alcohol memory if it 

was administered in conjunction with a memory reactivation session, and if the antagonist was 

centrally active. 

The number of nosepoke responses, which had previously been reinforced with alcohol, did 

not differ between VEH and PRO groups during ANR testing, as has been observed previously for CS-

sucrose and CS-cocaine memories (Figure S2). There were no differences between the VEH and PRO 

groups, regardless of whether drug administration had occurred with memory reactivation or not 

[Drug: F<1; Reactivation: F(1,55)=3.45, p=0.069; Drug x Reactivation: F<1]. Interestingly, rats that 

received NAD prior to memory reactivation made more nosepokes during the ANR test sessions than 

the VEH group [Drug: F(1,29)=5.47, p=0.026, η2=0.16; Session x Drug: F(4.0,117)=3.97, p=0.005, η2=0.12]. 

Šidák-corrected pairwise comparisons revealed higher numbers of nosepokes made by the NAD 
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group in the first, second and fourth ANR test sessions [all p’s<0.012] but this increased nosepoking 

was not persistent, and returned to VEH levels from the fifth test session [all p’s>0.16]. 

 

Neither propranolol nor nadolol acutely affected performance during the memory reactivation 

session 

Neither of the β-adrenergic receptor antagonists acutely affected responding during the memory 

reactivation session (Figure 1D). The number of CS presentations was the same in all reactivated 

groups [Drug: F<1] and there were no differences in the numbers of nosepokes made during the 

memory reactivation session [Drug: F(2,39)=1.86, p=0.17]. 

 

All experimental groups were matched for acquisition of the CS-alcohol association during training 

There were no differences between groups in the acquisition of alcohol-drinking behavior as 

assessed by ethanol consumption during the saccharin-fading procedure (Figure S1), and no 

differences in the acquisition of the CS-alcohol memory during training (Figure S3). Rats 

subsequently given either VEH or PRO on the treatment day did not differ in terms of the amount of 

ethanol drunk during the saccharin fading procedure [Drug: F<1], and there were no differences in 

ethanol consumption between prospective reactivated and non-reactivated groups [Reactivation: 

F(1,55)=3.85, p=0.055]. There were no differences in the amount of fluid consumed between the 

prospective reactivated VEH group and the prospective NAD group [Drug: F(1,29)=1.24, p=0.28; 

Session x Drug: F<1]. 

The prospective VEH and PRO groups were well-matched for performance during nosepoke 

training (Figure S3). All rats acquired the instrumental nosepoke response for ethanol across the 

course of training [Session: F(4.6,251)=3.02, p=0.014, η2=0.05] and there were no differences in the 
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number of nosepokes made by the prospective VEH- or PRO-treated rats [Drug: F<1] , nor any 

differences between those rats that were subsequently reactivated and those that were not 

[Reactivation: F<1]. There were also no differences in the number of nosepokes made during 

training between the prospective reactivated VEH group and the prospective NAD group [Drug: F<1].  

Similarly, there were no differences in the number of CS-alcohol pairings during training. The 

number of behaviorally contingent CS exposures increased across sessions [Session: F(4.6,255)=8.16, 

p<0.001, η2=0.13] and there were no differences in the number of nosepokes made by the 

prospective VEH- or PRO-treated rats [Drug: F<1], nor any differences between those rats that were 

subsequently reactivated and those that were not [Reactivation: F(1,55)=2.26, p=0.14]. There were 

also no differences in the number of CS exposures during training between the prospective VEH and 

NAD groups [Drug: F(1,29)=2.28, p=0.14]. 

Experiment 2 

Administration of the adrenergic prodrug dipivefrin at reactivation enhanced the capacity of a 

previously alcohol-associated CS to act subsequently as a conditioned reinforcer 

Administration of the adrenergic prodrug dipivefrin (DIP) prior to memory reactivation enhanced the 

capacity of the previously alcohol-associated CS to support the acquisition of a new instrumental 

response for conditioned reinforcer in subsequent test sessions [Drug: F(1,41)=4.36, p=0.043, 

η2=0.096]. All animals acquired the new instrumental response for conditioned reinforcement 

(Figures 2B and 2C), discriminating between the CS-producing active lever and the inactive control 

lever [Lever: F(1,41)=20.1, p<0.001, η2=0.33], with a trend towards slightly better discrimination by the 

DIP-treated group [Lever x Drug: F(1,41)=3.59, p=0.065, η2=0.08] and by reactivated animals [Lever x 

Reactivation: F(1,41)=4.06, p=0.051, η2=0.09]. Although there was no significant interaction of Lever x 

Reactivation x Drug [F<1], this comparison was somewhat underpowered, with an observed power 

of 0.14. However, a priori planned Šidák-corrected pairwise comparisons revealed that animals that 
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received DIP prior to reactivation responded more on the active lever than VEH-treated controls 

[p=0.017], while there were no differences between the non-reactivated DIP-treated and VEH-

treated groups [p=0.339]. Furthermore, there were no differences in responding on the inactive 

lever for any of the groups [all p’s>0.62]. 

There were no differences in the number of nosepokes made during ANR testing (Figure S2) 

by animals treated with DIP or VEH, regardless of whether the drugs were administered prior to, or 

in the absence of, memory reactivation [Drug: F<1; Reactivation: F<1; Drug x Reactivation: F<1]. 

Administration of dipivefrin prior to memory reactivation did not acutely affect behavior during the 

reactivation session itself 

Responding during the memory reactivation session was unaffected by the prior administration of 

DIP (Figure 2D). There were no differences in the numbers of nosepokes made by the two 

experimental groups [Drug: F<1] and consequently no differences in the number of response-

contingent CS presentations during reactivation [Drug: F<1]. 

 

All experimental groups were matched for acquisition of the CS-alcohol association during training 

There were no differences in the amount of ethanol consumed by the different experimental groups 

during the saccharin-fading procedure (Figure S1). Rats subsequently assigned to the VEH and DIP 

groups did not differ on the amount of ethanol drunk during fading [Drug: F<1] and there were no 

differences between the prospective reactivated and non-reactivated groups [Reactivation: 

F(1,41)=2.60, p=0.12].  

There were no differences between the prospective experimental groups during nosepoke 

training (Figure S3) of the CS-alcohol association [Drug: F (1,41)=1.12, p=0.30; Session x Drug: 

F(5.1,209)=1.07, p=0.39]. Although there was a trend towards greater responding in the non-
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reactivated groups [Reactivation: F(1,41)=4.01, p=0.052, η2=0.09], this was the case for both the DIP- 

and VEH-treated groups [Drug x Reactivation: F<1; Session x Drug x Reactivation: F<1]. Likewise, 

there were no differences in the numbers of CS presentations earned during training between the 

experimental groups, regardless of whether the groups were to be subsequently reactivated or not 

[Drug: F<1; Reactivation: F(1,41)=1.52, p=0.23; Drug x Reactivation: F< 1]. 

DISCUSSION 

The experiments described here demonstrate that enhancing and diminishing activity of central β-

adrenergic receptors can bidirectionally modulate the reconsolidation of a CS-alcohol memory, as 

assessed by the capacity of the previously alcohol-associated CS to act as a conditioned reinforcer in 

rats with a history of alcohol self-administration. As has been observed previously for cocaine-, 

heroin- and sucrose-associated stimuli (Di Ciano and Everitt, 2004; Parkinson et al, 2005) responding 

for conditioned reinforcement was persistent and resistant to extinction in vehicle-treated animals. 

However, the lipophilic β-adrenergic receptor antagonist propranolol, but not the hydrophilic β-

adrenergic receptor antagonist nadolol, disrupted the reconsolidation of the CS-alcohol memory 

when administered at memory reactivation. Furthermore, systemic administration of the adrenergic 

prodrug dipivefrin at reactivation enhanced the reconsolidation of the CS-alcohol memory, 

increasing the capacity of the previously alcohol-associated CS to act subsequently as a conditioned 

reinforcer. Thus, these data indicate that the reconsolidation of a CS-alcohol memory can be 

bidirectionally modulated by reducing and enhancing central adrenergic signaling. 

These data extend previous work showing that adrenergic signaling is required for the 

reconsolidation of the memory underlying conditioned reinforcement for cocaine-associated  and 

sucrose-associated CSs (Milton et al, 2008) through our use of alcohol as the primary reinforcer. 

Along with the demonstration that propranolol can disrupt the reconsolidation of memories 

underlying a place preference conditioned to morphine (Robinson et al, 2007) or to alcohol (Wouda 
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et al, 2010), this work shows that adrenergic signaling is not only required for the reconsolidation of 

memories associated with psychostimulants, but also for drugs with CNS-depressant mechanisms of 

action. Furthermore, the demonstration that nadolol failed to disrupt the reconsolidation of the CS-

alcohol memory adds to growing evidence that central adrenergic signaling is required for memory 

reconsolidation; the systemic administration of nadolol also failed to disrupt the reconsolidation of 

the memory underlying morphine conditioned place preference (CPP) (Robinson et al, 2007), though 

nadolol administered directly into the basolateral amygdala did disrupt the reconsolidation of the 

memory underlying cocaine CPP (Otis et al, 2013).  

In contrast to previous research, we found that a single treatment of propranolol given at 

memory reactivation was sufficient to persistently disrupt the CS-US memory for at least 36 days 

after treatment, whereas multiple reactivation and treatment sessions were required to disrupt the 

reconsolidation of the memory underlying alcohol CPP (Wouda et al, 2010). We have previously 

shown that propranolol does not disrupt the reconsolidation of the memories underlying alcohol-CS 

conditioned approach (‘sign-tracking’) or conditioned motivation (PIT) (Milton et al, 2012). These 

findings therefore support our hypothesis that propranolol disrupts only one of the ‘three routes to 

relapse’ – that by which drug-associated CSs reinforce drug-seeking responses (Milton et al, 2010). It 

has been shown previously that conditioned approach, conditioned motivation and conditioned 

reinforcement are supported by different components of the limbic corticostriatal circuitry (see 

Cardinal et al, 2002, for review). Further work will be required to determine whether the capacity of 

β-adrenergic signaling to influence memory reconsolidation is reflected by differences in adrenergic 

projections and receptor distributions in these areas.  

The finding that the reconsolidation of a CS-alcohol memory can be enhanced by the 

administration of the adrenergic prodrug dipivefrin is the first demonstration, to our knowledge, 

that an appetitive memory has been strengthened by increasing adrenergic signaling at reactivation. 

Thus, these data extend previous findings for aversive memories, where the administration of the β-
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adrenergic receptor agonist isoproterenol (Dębiec et al, 2011) or administration of the α2-adrenergic 

receptor antagonist yohimbine (Gazarini et al, 2013) were shown to enhance the reconsolidation of 

a CS-fear memory.  

Disrupting the memories underlying the ‘three routes to relapse’ (Milton et al, 2010) offers 

an opportunity for improving current treatments to promote abstinence in drug addiction. Of these 

‘routes to relapse’, conditioned reinforcement is particularly problematic because of its persistence 

and resistance to extinction (Di Ciano et al, 2004). Thus, propranolol may be useful in disrupting the 

memories that underlie this process in the maladaptive context of addiction. Further work needs to 

be conducted to determine whether propranolol would be effective in populations with alcohol 

dependence and whether these results would generalize to previously alcohol-dependent humans, 

but the finding that a drug that can be safely administered systemically in humans is effective at 

persistently reducing the risk of relapse in a rodent model of cue-induced relapse holds promise for 

the development of pro-abstinence, anti-relapse treatments for addiction.  
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FIGURE LEGENDS 

Figure 1. A centrally active, but not peripherally active, β-adrenergic receptor antagonist disrupted 

the reconsolidation of a CS-alcohol memory. (A) An overview of the experimental timeline. The 

injection symbol represents an i.p. injection of the centrally active β-adrenergic receptor antagonist 

propranolol (PRO), the peripherally active β-adrenergic receptor antagonist nadolol (NAD) or vehicle 

(VEH) 30 minutes prior to the memory reactivation session. The numbers underneath the boxes 

refer to the number of sessions. (B) Administration of PRO prior to memory reactivation prevented a 

previously alcohol-associated CS from subsequently acting as a conditioned reinforcer. By contrast, 

administration of NAD at reactivation did not affect the CS-alcohol memory, such that the CS could 

subsequently act as a conditioned reinforcer in the same manner that it did for animals treated with 

VEH at reactivation. Asterisks denote statistically higher responding on the active than inactive lever; 

the dagger denotes active lever pressing that is significantly lower than the VEH control group. (C) 

When PRO was administered without a memory reactivation session, it did not subsequently impair 

the capacity of the alcohol-associated CS to act as a conditioned reinforcer, indicating that the 

disruption of the CS-alcohol memory with propranolol was reactivation-dependent. Asterisks denote 

statistically higher responding on the active than inactive lever. Data in (B) and (C) are square-root 

transformed and presented as means ± s.e.m. (D) The administration of β-adrenergic receptor 

antagonists had no acute effect on performance during the memory reactivation session, as PRO nor 

NAD had any effect on the number of nosepokes made during the memory reactivation, or the 

number of response-contingent CS presentations earned during this session. Group sizes: (B and D) 

Reactivated VEH=22; reactivated PRO=11; reactivated NAD=9; (C) non-reactivated VEH=13; non-

reactivated PRO=13 rats per group. 

Figure 2. Administration of the adrenergic prodrug dipivefrin enhanced the reconsolidation of CS-

alcohol memory, increasing subsequent responding for a previously alcohol-associated 

conditioned reinforcer. (A) An overview of the experimental timeline. The injection symbol 
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represents an i.p. injection of the adrenergic prodrug dipivefrin (DIP) 10 minutes prior to the 

memory reactivation session. The numbers underneath the boxes refer to the number of sessions. 

(B) Administration of DIP prior to the memory reactivation session enhanced subsequent responding 

on the lever reinforced by presentation of the previously alcohol-associated conditioned reinforcer. 

Asterisks denote statistically higher responding on the active than inactive lever; the dagger denotes 

active lever pressing that is significantly higher than the VEH control group. (C) Dipivefrin given 

without memory reactivation produced subsequent responding that was indistinguishable from 

vehicle-treated animals. Asterisks denote statistically higher responding on the active than inactive 

lever. Data in (B) and (C) are square-root transformed and presented as means ± s.e.m. (D) DIP had 

no acute effect on performance during the memory reactivation session, as it did not affect the 

number of nosepoke responses made, or CS presentations earned, relative to the vehicle-treated 

(VEH) control group during the memory reactivation session.  Group sizes: (B and D) reactivated 

VEH=13; reactivated DIP=14; (C) non-reactivated VEH=9; non-reactivated DIP=9 rats per group.  
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