273 research outputs found

    Estrogen Receptor Alpha as a Key Target of Red Wine Polyphenols Action on the Endothelium

    Get PDF
    BACKGROUND: A greater reduction in cardiovascular risk and vascular protection associated with diet rich in polyphenols are generally accepted; however, the molecular targets for polyphenols effects remain unknown. Meanwhile evidences in the literature have enlightened, not only structural similarities between estrogens and polyphenols known as phytoestrogens, but also in their vascular effects. We hypothesized that alpha isoform of estrogen receptor (ERalpha) could be involved in the transduction of the vascular benefits of polyphenols. METHODOLOGY/PRINCIPAL FINDINGS: Here, we used ERalpha deficient mice to show that endothelium-dependent vasorelaxation induced either by red wine polyphenol extract, Provinols, or delphinidin, an anthocyanin that possesses similar pharmacological profile, is mediated by ERalpha. Indeed, Provinols, delphinidin and ERalpha agonists, 17-beta-estradiol and PPT, are able to induce endothelial vasodilatation in aorta from ERalpha Wild-Type but not from Knock-Out mice, by activation of nitric oxide (NO) pathway in endothelial cells. Besides, silencing the effects of ERalpha completely prevented the effects of Provinols and delphinidin to activate NO pathway (Src, ERK 1/2, eNOS, caveolin-1) leading to NO production. Furthermore, direct interaction between delphinidin and ERalpha activator site is demonstrated using both binding assay and docking. Most interestingly, the ability of short term oral administration of Provinols to decrease response to serotonin and to enhance sensitivity of the endothelium-dependent relaxation to acetylcholine, associated with concomitant increased NO production and decreased superoxide anions, was completely blunted in ERalpha deficient mice. CONCLUSIONS/SIGNIFICANCE: This study provides evidence that red wine polyphenols, especially delphinidin, exert their endothelial benefits via ERalpha activation. It is a major breakthrough bringing new insights of the potential therapeutic of polyphenols against cardiovascular pathologies

    Maternal Antibiotic-Induced Early Changes in Microbial Colonization Selectively Modulate Colonic Permeability and Inducible Heat Shock Proteins, and Digesta Concentrations of Alkaline Phosphatase and TLR-Stimulants in Swine Offspring

    Get PDF
    Elevated intake of high energy diets is a risk factor for the development of metabolic diseases and obesity. High fat diets cause alterations in colonic microbiota composition and increase gut permeability to bacterial lipopolysaccharide, and subsequent low-grade chronic inflammation in mice. Chronic inflammatory bowel diseases are increasing worldwide and may involve alterations in microbiota-host dialog. Metabolic disorders appearing in later life are also suspected to reflect changes in early programming. However, how the latter affects the colon remains poorly studied. Here, we hypothesized that various components of colonic physiology, including permeability, ion exchange and protective inducible heat shock proteins (HSP) are influenced in the short- and long-terms by early disturbances in microbial colonization. The hypothesis was tested in a swine model. Offspring were born to control mothers (n = 12) or mothers treated with the antibiotic (ATB) amoxicillin around parturition (n = 11). Offspring were slaughtered between 14 and 42 days of age to study short-term effects. For long-term effects, young adult offspring from the same litters consumed a normal or a palm oil-enriched diet for 4 weeks between 140 and 169 days of age. ATB treatment transiently modified maternal fecal microbiota although the minor differences observed for offspring colonic microbiota were nonsignificant. In the short-term, consistently higher HSP27 and HSP70 levels and transiently increased horseradish peroxidase permeability in ATB offspring colon were observed. Importantly, long-term consequences included reduced colonic horseradish peroxidase permeability, and increased colonic digesta alkaline phosphatase (AP) and TLR2- and TLR4-stimulant concentrations in rectal digesta in adult ATB offspring. Inducible HSP27 and HSP70 did not change. Interactions between early ATB treatment and later diet were noted for paracellular permeability and concentrations of colonic digesta AP. In conclusion, our data suggest that early ATB-induced changes in bacterial colonization modulate important aspects of colonic physiology in the short- and longterms

    Individual Human Brain Areas Can Be Identified from Their Characteristic Spectral Activation Fingerprints

    Get PDF
    The human brain can be parcellated into diverse anatomical areas. We investigated whether rhythmic brain activity in these areas is characteristic and can be used for automatic classification. To this end, resting-state MEG data of 22 healthy adults was analysed. Power spectra of 1-s long data segments for atlas-defined brain areas were clustered into spectral profiles (“fingerprints”), using k-means and Gaussian mixture (GM) modelling. We demonstrate that individual areas can be identified from these spectral profiles with high accuracy. Our results suggest that each brain area engages in different spectral modes that are characteristic for individual areas. Clustering of brain areas according to similarity of spectral profiles reveals well-known brain networks. Furthermore, we demonstrate task-specific modulations of auditory spectral profiles during auditory processing. These findings have important implications for the classification of regional spectral activity and allow for novel approaches in neuroimaging and neurostimulation in health and disease

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Search for pair-produced long-lived neutral particles decaying to jets in the ATLAS hadronic calorimeter in ppcollisions at √s=8TeV

    Get PDF
    The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3fb−1of data collected in proton–proton collisions at √s=8TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeVto 900 GeV, and a long-lived neutral particle mass from 10 GeVto 150 GeV

    Interaction between acrylic substrates and RAD16-I peptide in its self-assembling

    Full text link
    [EN] Self-assembling peptides (SAP) are widely used as scaffolds themselves, and recently as fillers of microporous scaffolds, where the former provides a cell-friendly nanoenvironment and the latter improves its mechanical properties. The characterization of the interaction between these short peptides and the scaffold material is crucial to assess the potential of such a combined system. In this work, the interaction between poly(ethyl acrylate) (PEA) and 90/10 ethyl acrylate-acrylic acid copolymer P(EAcoAAc) with the SAP RAD16-I has been followed using a bidimensional simplified model. By means of the techniques of choice (congo red staining, atomic force microscopy (AFM), and contact angle measurements) the interaction and self-assembly of the peptide has proven to be very sensitive to the wettability and electro-negativity of the polymeric substrate.The authors acknowledge funding through the European Commission FP7 project RECATABI (NMP3-SL-2009-229239), and from the Spanish Ministerio de Ciencia e Innovacion through projects MAT2011-28791-C03-02 and -03. This work was also supported by the Spanish Ministerio de Educacion through M. Arnal-Pastor FPU 2009-1870 grant. The authors acknowledge the assistance and advice of Electron Microscopy Service of the UPV.Arnal Pastor, MP.; González-Mora, D.; García-Torres, F.; Monleón Pradas, M.; Vallés Lluch, A. (2016). Interaction between acrylic substrates and RAD16-I peptide in its self-assembling. Journal of Polymer Research. 23(9):173-184. https://doi.org/10.1007/s10965-016-1069-3S173184239Davis ME, Motion JP, Narmoneva DA, Takahashi T, Hakuno D, Kamm RD, Zhang S, Lee RT (2005) Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation 111(4):442–450Zhang S, Lockshin C, Cook R, Rich A (1994) Unusually stable beta-sheet formation in an ionic self-complementary oligopeptide. Biopolymers 34:663–672Zhang S, Altman M (1999) Peptide self-assembly in functional polymer science and engineering. Reac Func Polym 41:91–102Zhang S, Gelain F, Zhao X (2005) Designer self-assembling peptide nanofiber scaffolds for 3D tissue cell cultures. Semin Cancer Biol 15(5):413–420Zhang S, Zhao X, Spirio L, PuraMatrix (2005) Self-assembling peptide nanofiber scaffolds. In: Ma PX, Elisseeff J (eds) Scaffolding in tissue Engineering. CRC Press, Boca Raton, FL, pp. 217–238Sieminski AL, Semino CE, Gong H, Kamm RD (2008) Primary sequence of ionic self-assembling peptide gels affects endothelial cell adhesion and capillary morphogenesis. J Biomed Mater Res A 87(2):494–504Quintana L, Fernández Muiños T, Genove E, Del Mar Olmos M, Borrós S, Semino CE (2009) Early tissue patterning recreated by mouse embryonic fibroblasts in a three-dimensional environment. Tissue Eng Part A 15(1):45–54Garreta E, Genové E, Borrós S, Semino CE (2006) Osteogenic differentiation of mouse embryonic stem cells and mouse embryonic fibroblasts in a three-dimensional self-assembling peptide scaffold. Tissue Eng 12(8):2215–2227Semino CE, Merok JR, Crane GG, Panagiotakos G, Zhang S (2003) Functional differentiation of hepatocyte-like spheroid structures from putative liver progenitor cells in three-dimensional peptide scaffolds. Differentiation 71:262–270Thonhoff JR, Lou DI, Jordan PM, Zhao X, Compatibility WP (2008) Of human fetal neural stem cells with hydrogel biomaterials in vitro. Brain Res 1187:42–51Tokunaga M, Liu ML, Nagai T, Iwanaga K, Matsuura K, Takahashi T, Kanda M, Kondo N, Wang P, Naito AT, Komuro I (2010) Implantation of cardiac progenitor cells using self-assembling peptide improves cardiac function after myocardial infarction. J Mol Cell Cardiol 49(6):972–983Takei J (2006) 3-Dimensional cell culture scaffold for everyone: drug screening. Tissue engineering and cancer biology. AATEX 11(3):170–176McGrath AM, Novikova LN, Novikov LN, Wiberg MBD (2010) ™ PuraMatrix™ peptide hydrogel seeded with Schwann cells for peripheral nerve regeneration. Brain Res Bull 83(5):207–213Wang W, Itoh S, Matsuda A, Aizawa T, Demura M, Ichinose S, Shinomiya K, Tanaka J (2008) Enhanced nerve regeneration through a bilayered chitosan tube: The effect ofintroduction of glycine spacer into the CYIGSR sequence. J Biomed Mater Res Part A 85:919–928Sargeant TD, Guler MO, Oppenheimer SM, Mata A, Satcher RL, Dunand DC, Stupp SI (2008) Hybrid bone implants: self-assembly of peptide amphiphile nanofibers within porous titanium. Biomaterials 29(2):161–171Vallés-Lluch A, Arnal-Pastor M, Martínez-Ramos C, Vilariño-Feltrer G, Vikingsson L, Castells-Sala C, Semino CE, Monleón Pradas M (2013) Combining self-assembling peptide gels with three-dimensional elastomer scaffolds. Acta Biomater 9(12):9451–9460Valles-Lluch A, Arnal-Pastor M, Martinez-Ramos C, Vilarino-Feltrer G, Vikingsson L, Monleon Pradas M (2013) Grid polymeric scaffolds with polypeptide gel filling as patches for infarcted tissue regeneration. Conf Proc IEEE Eng Med Biol Soc 2013:6961–6964Soler-Botija C, Bagó JR, Llucià-Valldeperas A, Vallés-Lluch A, Castells-Sala C, Martínez-Ramos C, Fernández-Muiños T, Chachques JC, Monleón Pradas M, Semino CE, Bayes-Genis A (2014) Engineered 3D bioimplants using elastomeric scaffold, self-assembling peptide hydrogel, and adipose tissue-derived progenitor cells for cardiac regeneration. Am J Transl Res 6(3):291–301Martínez-Ramos M, Arnal-Pastor M, Vallés-Lluch A, Monleón Pradas M (2015) Peptide gel in a scaffold as a composite matrix for endothelial cells. J Biomed Mater Res Part A 103 A:3293–3302Rico P, Rodríguez Hernández JC, Moratal D, Altankov G, Monleón Pradas M, Salmerón-Sánchez M (2009) Substrate-induced assembly of fibronectin into networks: influence of surface chemistry and effect on osteoblast adhesion. Tissue Eng Part A 15(11):3271–3281Gugutkov D, Altankov G, Rodríguez Hernández JC, Monleón Pradas M, Salmerón Sánchez M (2010) Fibronectin activity on substrates with controlled -OH density. J Biomed Mater Res A 92(1):322–331Rodríguez Hernández JC, Salmerón Sánchez M, Soria JM, Gómez Ribelles JL, Monleón Pradas M (2007) Substrate chemistry-dependent conformations of single laminin molecules on polymer surfaces are revealed by the phase signal of atomic force microscopy. Biophys J 93(1):202–207Cantini M, Rico P, Moratal D, Salmerón-Sánchez M (2012) Controlled wettability, same chemistry: biological activity of plasma-polymerized coatings. Soft Matter 8:5575–5584Anselme K, Ponche A, Bigerelle M (2010) Relative influence of surface topography and surface chemistry on cell response to bone implant materials. Part 2: biological aspects. Proc Inst Mech Eng H J Eng Med 224:1487–1507Hartgerink JD, Beniash E, Stupp SI (2002) Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci U S A 99(8):5133–5138Busscher HJ, Vanpelt AWJ, Deboer P, Dejong HP, Arends J (1984) The effect of surface roughening of polymers on measured contact angles of liquids. Colloids Surf 9:319–331Birdi, KS. (1997) Surface tension of polymers. In: Yildrim Erbil H, ed. Handbook of surface and colloid chemistry CRC Press, Boca Raton, p. 292.Collier JH (2003) MessersmithPB.Enzymatic modification of self-assembled peptide structures with tissue transglutaminase. Bioconjug Chem 14(4):748–755Kakiuchi Y, Hirohashi N, Murakami-Murofushi K (2013) The macroscopic structure of RADA16 peptide hydrogel stimulates monocyte/macrophage differentiation in HL60 cells via cholesterol synthesis. BiochemBiophys Res Commun 433(3):298–304Pérez-Garnes M, González-García C, Moratal D, Rico P, Salmerón-Sánchez M (2011) Fibronectin distribution on demixednanoscale topographies. Int J Artif Organs 34(1):54–63Salmerón-Sánchez M, Rico P, Moratal D, Lee TT, Schwarzbauer JE, García AJ (2011) Role of material-driven fibronectin fibrillogenesis in cell differentiation. Biomaterials 32(8):2099–2105Ye Z, Zhang H, Luo H, Wang S, Zhou Q, DU X, et al. (2008) Temperature and pH effects on biophysical and morphological properties of self-assembling peptide RADA16-I. J Pept Sci 14:152–162Keselowsky BG, Collard DM, García AJ (2004) Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding. Biomaterials 25:5947–5954Scotchford CA, Gilmore CP, Cooper E, Leggett GJ, Downes S (2002) Protein adsorption and human osteoblast-like cell attachment and growth on alkylthiol on gold self-assembled monolayers. J Biomed Mater Res 59:84–99Coelho NM, González-García C, Planell JA, Salmerón-Sánchez M, Altankov G (2010) Different assembly of type IV collagen on hydrophilic and hydrophobic substrata alters endothelial cells interaction. Eur Cell Mater 19:262–272Briz N, Antolinos-Turpin CM, Alió J, Garagorri N, Gómez Ribelles JL, Gómez-Tejedor JA (2013) Fibronectin fixation on poly(ethyl acrylate)-based copolymers. J Biomed Mater Res B Appl Biomater 101(6):991–997Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13(8):1741–1747Soria JM, Martínez Ramos C, Bahamonde O, García Cruz DM, Salmerón Sánchez M, García Esparza MA, Casas C, Guzmán M, Navarro X, Gómez Ribelles JL, García Verdugo JM, Monleón Pradas M, Barcia JA (2007) Influence of the substrate's hydrophilicity on the in vitro Schwann cells viability. J Biomed Mater Res A 83(2):463–470Van Krevelen, DW. (1997) Properties of polymers. Chapter 13 mechanical properties of solid polymers. Elsevier, pp. 367–43

    FHA-Mediated Cell-Substrate and Cell-Cell Adhesions Are Critical for Bordetella pertussis Biofilm Formation on Abiotic Surfaces and in the Mouse Nose and the Trachea

    Get PDF
    Bordetella spp. form biofilms in the mouse nasopharynx, thereby providing a potential mechanism for establishing chronic infections in humans and animals. Filamentous hemagglutinin (FHA) is a major virulence factor of B. pertussis, the causative agent of the highly transmissible and infectious disease, pertussis. In this study, we dissected the role of FHA in the distinct biofilm developmental stages of B. pertussis on abiotic substrates and in the respiratory tract by employing a murine model of respiratory biofilms. Our results show that the lack of FHA reduced attachment and decreased accumulation of biofilm biomass on artificial surfaces. FHA contributes to biofilm development by promoting the formation of microcolonies. Absence of FHA from B. pertussis or antibody-mediated blockade of surface-associated FHA impaired the attachment of bacteria to the biofilm community. Exogenous addition of FHA resulted in a dose-dependent inhibitory effect on bacterial association with the biofilms. Furthermore, we show that FHA is important for the structural integrity of biofilms formed on the mouse nose and trachea. Together, these results strongly support the hypothesis that FHA promotes the formation and maintenance of biofilms by mediating cell-substrate and inter-bacterial adhesions. These discoveries highlight FHA as a key factor in establishing structured biofilm communities in the respiratory tract

    Nucleation and crystallization in bio-based immiscible polyester blends

    Get PDF
    Bio-based thermoplastic polyesters are highly promising materials as they combine interesting thermal and physical properties and in many cases biodegradability. However, sometimes the best property balance can only be achieved by blending in order to improve barrier properties, biodegradability or mechanical properties. Nucleation, crystallization and morphology are key factors that can dominate all these properties in crystallizable biobased polyesters. Therefore, their understanding, prediction and tailoring is essential. In this work, after a brief introduction about immiscible polymer blends, we summarize the crystallization behavior of the most important bio-based (and immiscible) polyester blends, considering examples of double-crystalline components. Even though in some specific blends (e.g., polylactide/polycaprolactone) many efforts have been made to understand the influence of blending on the nucleation, crystallization and morphology of the parent components, there are still many points that have yet to be understood. In the case of other immiscible polyester blends systems, the literature is scarce, opening up opportunities in this environmentally important research topic.The authors would like to acknowledge funding by the BIODEST project ((RISE) H2020-MSCA-RISE-2017-778092
    corecore