917 research outputs found

    An assessment of validity and responsiveness of generic measures of health-related quality of life in hearing impairment

    Get PDF
    This article is made available through the Brunel Open Access Publishing Fund. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Purpose: This review examines psychometric performance of three widely used generic preference-based measures, that is, EuroQol 5 dimensions (EQ-5D), Health Utility Index 3 (HUI3) and Short-form 6 dimensions (SF-6D) in patients with hearing impairments. Methods: A systematic search was undertaken to identify studies of patients with hearing impairments where health state utility values were measured and reported. Data were extracted and analysed to assess the reliability, validity (known group differences and convergent validity) and responsiveness of the measures across hearing impairments. Results: Fourteen studies (18 papers) were included in the review. HUI3 was the most commonly used utility measures in hearing impairment. In all six studies, the HUI3 detected difference between groups defined by the severity of impairment, and four out of five studies detected statistically significant changes as a result of intervention. The only study available suggested that EQ-5D only had weak ability to discriminate difference between severity groups, and in four out of five studies, EQ-5D failed to detected changes. Only one study involved the SF-6D; thus, the information is too limited to conclude on its performance. Also evidence for the reliability of these measures was not found. Conclusion: Overall, the validity and responsiveness of the HUI3 in hearing impairment was good. The responsiveness of EQ-5D was relatively poor and weak validity was suggested by limited evidence. The evidence on SF-6D was too limited to make any judgment. More head-to-head comparisons of these and other preference measures of health are required.Medical Research Counci

    QCD axion and quintessential axion

    Full text link
    The axion solution of the strong CP problem is reviewed together with the other strong CP solutions. We also point out the quintessential axion(quintaxion) whose potential can be extremely flat due to the tiny ratio of the hidden sector quark mass and the intermediate hidden sector scale. The quintaxion candidates are supposed to be the string theory axions, the model independent or the model dependent axions.Comment: 15 pages. Talk presented at Castle Ringberg, June 9-14, 200

    Weinberg like sum rules revisited

    Get PDF
    The generalized Weinberg sum rules containing the difference of isovector vector and axial-vector spectral functions saturated by both finite and infinite number of narrow resonances are considered. We summarize the status of these sum rules and analyze their overall agreement with phenomenological Lagrangians, low-energy relations, parity doubling, hadron string models, and experimental data.Comment: 31 pages, noticed misprints are corrected, references are added, and other minor corrections are mad

    The Minimal Scale Invariant Extension of the Standard Model

    Full text link
    We perform a systematic analysis of an extension of the Standard Model that includes a complex singlet scalar field and is scale invariant at the tree level. We call such a model the Minimal Scale Invariant extension of the Standard Model (MSISM). The tree-level scale invariance of the model is explicitly broken by quantum corrections, which can trigger electroweak symmetry breaking and potentially provide a mechanism for solving the gauge hierarchy problem. Even though the scale invariant Standard Model is not a realistic scenario, the addition of a complex singlet scalar field may result in a perturbative and phenomenologically viable theory. We present a complete classification of the flat directions which may occur in the classical scalar potential of the MSISM. After calculating the one-loop effective potential of the MSISM, we investigate a number of representative scenarios and determine their scalar boson mass spectra, as well as their perturbatively allowed parameter space compatible with electroweak precision data. We discuss the phenomenological implications of these scenarios, in particular, whether they realize explicit or spontaneous CP violation, neutrino masses or provide dark matter candidates. In particular, we find a new minimal scale-invariant model of maximal spontaneous CP violation which can stay perturbative up to Planck-mass energy scales, without introducing an unnaturally large hierarchy in the scalar-potential couplings.Comment: 71 pages, 34 eps figures, numerical error corrected, clarifying comments adde

    Exploring the relationship between grapheme colour-picking consistency and mental imagery

    Get PDF
    Previous research has indicated a potential link between mental imagery and synaesthesia. However, these findings are mainly based on imagery self-report measures and recruitment of self-selected synaesthetes. To avoid issues of self-selection and demand effects we recruited participants from the general population, rather than synaesthetes specifically, and used colour-picking consistency tests for letters and numbers to assess a "synaesthete-like" experience. Mental imagery ability and mental rotation ability were assessed using both self-report measures and behavioural assessments. Consistency in colour-picking for letters (but not numbers) was predicted by performance on the visual mental imagery task, but not by a mental rotation task or self-report measures. Using the consistency score as a proxy measure of grapheme-colour synaesthesia, we provide more evidence for the suggestion that synaesthetic experience is associated with enhanced mental imagery, even when participants are naïve to the research topic

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Search for pair-produced long-lived neutral particles decaying to jets in the ATLAS hadronic calorimeter in ppcollisions at √s=8TeV

    Get PDF
    The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3fb−1of data collected in proton–proton collisions at √s=8TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeVto 900 GeV, and a long-lived neutral particle mass from 10 GeVto 150 GeV
    corecore