6,263 research outputs found
Luminosity Dependence in the Fundamental Plane Projections of Elliptical Galaxies
We analyze the fundamental plane projections of elliptical galaxies as a
function of luminosity, using a sample of approximately 80,000 galaxies drawn
from Data Release 4 (DR4) of the Sloan Digital Sky Survey (SDSS). We separate
brightest cluster galaxies (BCGs) from our main sample and reanalyze their
photometry due to a problem with the default pipeline sky subtraction for BCGs.
The observables we consider are effective radius (R_e), velocity dispersion
(sigma), dynamical mass (M_dyn ~ R_e sigma2), effective density (sigma2/R_e2),
and effective surface brightness (mu_e). With the exception of the L-M_dyn
correlation, we find evidence of variations in the slope (i.e. the power-law
index) of the fundamental plane projections with luminosity for our normal
elliptical galaxy population. In particular, the radius-luminosity and
Faber-Jackson relations are steeper at high luminosity relative to low
luminosity, and the more luminous ellipticals become progressively less dense
and have lower surface brightnesses than lower luminosity ellipticals. These
variations can be understood as arising from differing formation histories,
with more luminous galaxies having less dissipation. Data from the literature
and our reanalysis of BCGs show that BCGs have radius-luminosity and
Faber-Jackson relations steeper than the brightest non-BCG ellipticals in our
sample, consistent with significant growth of BCGs via dissipationless mergers.
The variations in slope we find in the Faber-Jackson relation of non-BCGs are
qualitatively similar to that reported in the black hole mass-velocity
dispersion (M_BH-sigma) correlation. This similarity is consistent with a
roughly constant value of M_BH/M_star over a wide range of early type galaxies,
where M_star is the stellar mass.Comment: v2: expanded analysis of BCGs; 17 pages, 9 figures; accepted in MNRA
Universal Fluctuation of the Hall Conductance in the Random Magnetic Field
We show that the RMS fluctuation of the antisymmetric part of the Hall
conductance of a planar mesoscopic metal in a random magnetic field with zero
average is universal, of the order of , independent of the amplitude of
the random magnetic field and the diffusion coefficient even in the weak field
limit. This quantity is exactly zero in the case of ordinary scalar disorder.
We propose an experiment to measure this surprising effect, and also discuss
its implications on the localization physics of this system. Our result applies
to some other systems with broken time-reversal ({\bf T}) symmetry.Comment: 4 pages, Revtex 3.0; added the paragraph regarding applicability to
other systems with broken T-invariance, misc. minor change
Genome Resources for Climate‐Resilient Cowpea, an Essential Crop for Food Security
Cowpea (Vigna unguiculata L. Walp.) is a legume crop that is resilient to hot and drought‐prone climates, and a primary source of protein in sub‐Saharan Africa and other parts of the developing world. However, genome resources for cowpea have lagged behind most other major crops. Here we describe foundational genome resources and their application to the analysis of germplasm currently in use in West African breeding programs. Resources developed from the African cultivar IT97K‐499‐35 include a whole‐genome shotgun (WGS) assembly, a bacterial artificial chromosome (BAC) physical map, and assembled sequences from 4355 BACs. These resources and WGS sequences of an additional 36 diverse cowpea accessions supported the development of a genotyping assay for 51 128 SNPs, which was then applied to five bi‐parental RIL populations to produce a consensus genetic map containing 37 372 SNPs. This genetic map enabled the anchoring of 100 Mb of WGS and 420 Mb of BAC sequences, an exploration of genetic diversity along each linkage group, and clarification of macrosynteny between cowpea and common bean. The SNP assay enabled a diversity analysis of materials from West African breeding programs. Two major subpopulations exist within those materials, one of which has significant parentage from South and East Africa and more diversity. There are genomic regions of high differentiation between subpopulations, one of which coincides with a cluster of nodulin genes. The new resources and knowledge help to define goals and accelerate the breeding of improved varieties to address food security issues related to limited‐input small‐holder farming and climate stress
A cross-center smoothness prior for variational Bayesian brain tissue segmentation
Suppose one is faced with the challenge of tissue segmentation in MR images,
without annotators at their center to provide labeled training data. One option
is to go to another medical center for a trained classifier. Sadly, tissue
classifiers do not generalize well across centers due to voxel intensity shifts
caused by center-specific acquisition protocols. However, certain aspects of
segmentations, such as spatial smoothness, remain relatively consistent and can
be learned separately. Here we present a smoothness prior that is fit to
segmentations produced at another medical center. This informative prior is
presented to an unsupervised Bayesian model. The model clusters the voxel
intensities, such that it produces segmentations that are similarly smooth to
those of the other medical center. In addition, the unsupervised Bayesian model
is extended to a semi-supervised variant, which needs no visual interpretation
of clusters into tissues.Comment: 12 pages, 2 figures, 1 table. Accepted to the International
Conference on Information Processing in Medical Imaging (2019
Functionalized Synthetic Biodegradable Polymer Scaffolds for Tissue Engineering
Scaffolds (artificial ECMs) play a pivotal role in the process of regenerating tissues in 3D. Biodegradable synthetic polymers are the most widely used scaffolding materials. However, synthetic polymers usually lack the biological cues found in the natural extracellular matrix. Significant efforts have been made to synthesize biodegradable polymers with functional groups that are used to couple bioactive agents. Presenting bioactive agents on scaffolding surfaces is the most efficient way to elicit desired cell/material interactions. This paper reviews recent advancements in the development of functionalized biodegradable polymer scaffolds for tissue engineering, emphasizing the syntheses of functional biodegradable polymers, and surface modification of polymeric scaffolds. Significant efforts have been made to develop functional biodegradable scaffolds for tissue regeneration that can enhance cell function and guide new tissue formation. This paper discusses the recent advancements of functionalizing synthetic biodegradable polymer scaffolds, focusing on polymer synthesis, surface modification, and cellular response on these functionalized scaffolds.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/92034/1/911_ftp.pd
Evidence of historical seismicity and volcanism in the Armenian Highland (from Armenian and other sources)
This work presents a summary on the development of studies of historical earthquakes in Armenia and adjacent parts of Turkey and Iran. Since ancient times, this region has been an arena where active geodynamic and seismic history intermingled with no less active and dynamic evolution of human cultures and societies. A long-term
historical record in this region beginning as early as the 8th century B.C. provides abundant evidence that can make an inestimable contribution to studies of historical seismicity and volcanism in the area. We discuss the main research methodology and sources used, and dwell on the principal catalogues of historical earthquakes compiled to date
Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain
The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here
All Optical Implementation of Multi-Spin Entanglement in a Semiconductor Quantum Well
We use ultrafast optical pulses and coherent techniques to create spin
entangled states of non-interacting electrons bound to donors (at least three)
and at least two Mn2+ ions in a CdTe quantum well. Our method, relying on the
exchange interaction between localized excitons and paramagnetic impurities,
can in principle be applied to entangle a large number of spins.Comment: 17 pages, 3 figure
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Measurement of the cross-section and charge asymmetry of bosons produced in proton-proton collisions at TeV with the ATLAS detector
This paper presents measurements of the and cross-sections and the associated charge asymmetry as a
function of the absolute pseudorapidity of the decay muon. The data were
collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with
the ATLAS experiment at the LHC and correspond to a total integrated luminosity
of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements
varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the
1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured
with an uncertainty between 0.002 and 0.003. The results are compared with
predictions based on next-to-next-to-leading-order calculations with various
parton distribution functions and have the sensitivity to discriminate between
them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables,
submitted to EPJC. All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
- …
