338 research outputs found

    The Legacy of Rolf Hagedorn: Statistical Bootstrap and Ultimate Temperature

    Get PDF
    In the latter half of the last century, it became evident that there exists an ever increasing number of different states of the so-called elementary particles. The usual reductionist approach to this problem was to search for a simpler infrastructure, culminating in the formulation of the quark model and quantum chromodynamics. In a complementary, completely novel approach, Hagedorn suggested that the mass distribution of the produced particles follows a self-similar composition pattern, predicting an unbounded number of states of increasing mass. He then concluded that such a growth would lead to a limiting temperature for strongly interacting matter. We discuss the conceptual basis for this approach, its relation to critical behavior, and its subsequent applications in different areas of high energy physics.Comment: 25 pages, 5 figures; to appear in R. Hagedorn and J. Rafelski (Ed.), "Melting Hadrons, Boiling Quarks", Springer Verlag 201

    Decays, contact P-wave interactions and hyperfine structure in Omega- exotic atoms

    Full text link
    Contact PP-wave interactions connected to the Larmor interaction of a magnetic dipole and Thomas spin precession in the filed of an electric quadrupole are described and their implications for spectroscopy of exotic Ω\Omega^{-}-atoms are studied. In order to evaluate the magnitude of the contact PP-wave interactions as compared to the conventional long-range interactions and the sensitivity of spectroscopic data to the Ω\Omega^{-}-hyperon quadrupole moment, we consider 2P2P states of Ω\Omega ^{-} atoms formed with light stable nuclei with spins I1/2I \geq 1/2 and atomic numbers Z10Z \leq 10. The energy level splitting caused by the contact interactions is 2-5 orders of magnitude smaller than the conventional long-range interactions. Strong decay widths of pΩp\Omega ^{-} atoms due to reactions pΩΛΞ0p\Omega^{-} \to \Lambda \Xi^{0} and pΩΣΞp\Omega^{-} \to \Sigma \Xi, induced by tt-channel kaon exchanges, are calculated. Ω\Omega ^{-} atoms formed with the light nuclei have strong widths 5-6 orders of magnitude higher than splitting caused by the contact interactions. The low-LL pattern in the energy spectra of intermediate- and high-ZZ Ω\Omega ^{-} atoms thus cannot be observed. The Ω\Omega ^{-} quadrupole moment can be measured by observing XX-rays from circular transitions between high-LL levels in Ω\Omega^{-} exotic atoms. The effect of strong interactions in 208^{208}PbΩ\Omega ^{-} atoms is negligible starting from L10L \sim 10. The contact PP-wave interactions exist in ordinary atoms and μ\mu-meson atoms.Comment: LaTeX 49 pages, 3 eps figures, replaced with published versio

    Interatomic potentials for atomistic simulations of the Ti-Al system

    Full text link
    Semi-empirical interatomic potentials have been developed for Al, alpha-Ti, and gamma-TiAl within the embedded atomic method (EAM) by fitting to a large database of experimental as well as ab-initio data. The ab-initio calculations were performed by the linear augmented plane wave (LAPW) method within the density functional theory to obtain the equations of state for a number of crystal structures of the Ti-Al system. Some of the calculated LAPW energies were used for fitting the potentials while others for examining their quality. The potentials correctly predict the equilibrium crystal structures of the phases and accurately reproduce their basic lattice properties. The potentials are applied to calculate the energies of point defects, surfaces, planar faults in the equilibrium structures. Unlike earlier EAM potentials for the Ti-Al system, the proposed potentials provide reasonable description of the lattice thermal expansion, demonstrating their usefulness in the molecular dynamics or Monte Carlo studies at high temperatures. The energy along the tetragonal deformation path (Bain transformation) in gamma-TiAl calculated with the EAM potential is in a fairly good agreement with LAPW calculations. Equilibrium point defect concentrations in gamma-TiAl are studied using the EAM potential. It is found that antisite defects strongly dominate over vacancies at all compositions around stoichiometry, indicating that gamm-TiAl is an antisite disorder compound in agreement with experimental data.Comment: 46 pages, 6 figures (Physical Review B, in press

    A minimal quasiparticle approach for the QGP and its large-NcN_c limits

    Full text link
    We propose a quasiparticle approach allowing to compute the equation of state of a generic gauge theory with gauge group SU(NcN_c) and quarks in an arbitrary representation. Our formalism relies on the thermal quasiparticle masses (quarks and gluons) computed from Hard-Thermal-Loop techniques, in which the standard two-loop running coupling constant is used. Our model is minimal in the sense that we do not allow any extra ansatz concerning the temperature-dependence of the running coupling. We first show that it is able to reproduce the most recent equations of state computed on the lattice for temperatures higher than 2 TcT_c. In this range of temperatures, an ideal gas framework is indeed expected to be relevant. Then we study the accuracy of various inequivalent large-NcN_c limits concerning the description of the QCD results, as well as the equivalence between the QCDAS_{AS} limit and the N=1{\cal N}=1 SUSY Yang-Mills theory. Finally, we estimate the dissociation temperature of the Υ\Upsilon-meson and comment on the estimations' stability regarding the different considered large-NcN_c limits.Comment: 19 pages, 6 figure

    Dynamical properties of liquid Al near melting. An orbital-free molecular dynamics study

    Get PDF
    The static and dynamic structure of liquid Al is studied using the orbital free ab-initio molecular dynamics method. Two thermodynamic states along the coexistence line are considered, namely T = 943 K and 1323 K for which X-ray and neutron scattering data are available. A new kinetic energy functional, which fulfills a number of physically relevant conditions is employed, along with a local first principles pseudopotential. In addition to a comparison with experiment, we also compare our ab-initio results with those obtained from conventional molecular dynamics simulations using effective interionic pair potentials derived from second order pseudopotential perturbation theory.Comment: 15 pages, 12 figures, 2 tables, submitted to PR

    Charmonium from Statistical Hadronization of Heavy Quarks -- a Probe for Deconfinement in the Quark-Gluon Plasma

    Full text link
    We review the statistical hadronization picture for charmonium production in ultra-relativistic nuclear collisions. Our starting point is a brief reminder of the status of the thermal model description of hadron production at high energy. Within this framework an excellent account is achieved of all data for hadrons built of (u,d,s) valence quarks using temperature, baryo-chemical potential and volume as thermal parameters. The large charm quark mass brings in a new (non-thermal) scale which is explicitely taken into account by fixing the total number of charm quarks produced in the collision. Emphasis is placed on the description of the physical basis for the resulting statistical hadronization model. We discuss the evidence for statistical hadronization of charmonia by analysis of recent data from the SPS and RHIC accelerators. Furthermore we discuss an extension of this model towards lower beam energies and develop arguments about the prospects to observe medium modifications of open and hidden charm hadrons. With the imminent start of the LHC accelerator at CERN, exciting prospects for charmonium production studies at the very high energy frontier come into reach. We present arguments that, at such energies, charmonium production becomes a fingerprint of deconfinement: even if no charmonia survive in the quark-gluon plasma, statistical hadronization at the QCD phase boundary of the many tens of charm quarks expected in a single central Pb-Pb collision could lead to an enhanced, rather than suppressed production probability when compared to results for nucleon-nucleon reactions scaled by the number of hard collisions in the Pb-Pb system.Comment: review article, 27 pages, Landoldt review volume "Relativistic Heavy Ion Physics", Reinhard Stock, edito

    Measurement of (anti)deuteron and (anti)proton production in DIS at HERA

    Get PDF
    The first observation of (anti)deuterons in deep inelastic scattering at HERA has been made with the ZEUS detector at a centre-of-mass energy of 300--318 GeV using an integrated luminosity of 120 pb-1. The measurement was performed in the central rapidity region for transverse momentum per unit of mass in the range 0.3<p_T/M<0.7. The particle rates have been extracted and interpreted in terms of the coalescence model. The (anti)deuteron production yield is smaller than the (anti)proton yield by approximately three orders of magnitude, consistent with the world measurements.Comment: 26 pages, 9 figures, 5 tables, submitted to Nucl. Phys.

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
    corecore