805 research outputs found

    Revisiting the method to obtain the mechanical properties of hydrided fuel cladding in the hoop direction

    Full text link
    The method reported in the literature to calculate the stress–strain curve of nuclear fuel cladding from ring tensile test is revisited in this paper and a new alternative is presented. In the former method, two universal curves are introduced under the assumption of small strain. In this paper it is shown that these curves are not universal, but material-dependent if geometric nonlinearity is taken into account. The new method is valid beyond small strains, takes geometric nonlinearity into consideration and does not need universal curves. The stress–strain curves in the hoop direction are determined by combining numerical calculations with experimental results in a convergent loop. To this end, ring tensile tests were performed in unirradiated hydrogen-charged samples. The agreement among the simulations and the experimental results is excellent for the range of concentrations tested (up to 2000 wppm hydrogen). The calculated stress–strain curves show that the mechanical properties do not depend strongly on the hydrogen concentration, and that no noticeable strain hardening occurs. However, ductility decreases with the hydrogen concentration, especially beyond 500 wppm hydrogen. The fractographic results indicate that as-received samples fail in a ductile fashion, whereas quasicleavage is bserved in the hydrogen-charged samples

    Using dileptons to probe the Color Glass Condensate

    Get PDF
    The rapidity and transverse momentum dependence of the nuclear modification ratio for dilepton production at RHIC and LHC is presented, calculated in the Color Glass Condensate (CGC) framework. The transverse momentum ratio is compared for two distinct dilepton mass values and a suppression of the Cronin peak is verified even for large mass. The nuclear modification ratio suppression in the dilepton rapidity spectra, as obtained experimentally for hadrons at RHIC, is verified for LHC energies at large transverse momentum, although not present at RHIC energies. The ratio between LHC and RHIC nuclear modification ratios is evaluated in the CGC, showing the large saturation effects at LHC compared with the RHIC results. These results consolidate the dilepton as a most suitable observable to investigate the QCD high density approaches.Comment: 5 pages, version to appear in Phys. Lett.

    Production of Secondaries in High Energy d+Au Collisions

    Full text link
    In the framework of Quark-Gluon String Model we calculate the inclusive spectra of secondaries produced in d+Au collisions at intermediate (CERN SPS) and at much higher (RHIC) energies. The results of numerical calculations at intermediate energies are in reasonable agreement with the data. At RHIC energies numerically large inelastic screening corrections (percolation effects) should be accounted for in calculations. We extract these effects from the existing RHIC experimental data on minimum bias and central d+Au collisions. The predictions for p+Au interactions at LHC energy are also given.Comment: 18 pages and 10 figure

    Cronin effect and energy conservation constraints in high energy proton-nucleus collisions

    Full text link
    We estimate the Cronin effect in pA collisions at the CERN LHC and at RHIC, using a Glauber-Eikonal model of initial state multiparton interactions. For a correct determination of the initial parton flux, we upgrade the model cross section, taking carefully into account all kinematical constraints of each multi-parton interaction process. As compared with previous results, derived with approximate kinematics, we obtain a softer spectrum of produced partons, while improving the agreement of the model with the recent measurements of neutral pions production in d+Au collisions at sqrt(s)=200 AGeV.Comment: Accepted by Phys.Rev.

    Phase structures of strong coupling lattice QCD with finite baryon and isospin density

    Full text link
    Quantum chromodynamics (QCD) at finite temperature (T), baryon chemical potential (\muB) and isospin chemical potential (\muI) is studied in the strong coupling limit on a lattice with staggered fermions. With the use of large dimensional expansion and the mean field approximation, we derive an effective action written in terms of the chiral condensate and pion condensate as a function of T, \muB and \muI. The phase structure in the space of T and \muB is elucidated, and simple analytical formulas for the critical line of the chiral phase transition and the tricritical point are derived. The effects of a finite quark mass (m) and finite \muI on the phase diagram are discussed. We also investigate the phase structure in the space of T, \muI and m, and clarify the correspondence between color SU(3) QCD with finite isospin density and color SU(2) QCD with finite baryon density. Comparisons of our results with those from recent Monte Carlo lattice simulations on finite density QCD are given.Comment: 18 pages, 6 figures, revtex4; some discussions are clarified, version to appear in Phys. Rev.

    Cronin Effect and High-p_T Suppression in pA Collisions

    Full text link
    We review the predictions of the theory of Color Glass Condensate for gluon production cross section in p(d)A collisions. We demonstrate that at moderate energies, when the gluon production cross section can be calculated in the framework of McLerran-Venugopalan model, it has only partonic level Cronin effect in it. At higher energies/rapidities corresponding to smaller values of Bjorken x quantum evolution becomes important. The effect of quantum evolution at higher energies/rapidities is to introduce suppression of high-p_T gluons slightly decreasing the Cronin enhancement. At still higher energies/rapidities quantum evolution leads to suppression of produced gluons at all values of p_T.Comment: 32 pages, 8 figures, v2: extended and improved discussion, references adde

    Percolation of Color Sources and the Shear Viscosity of the QGP in Central A-A Collisions at RHIC and LHC Energies

    Get PDF
    The Color String Percolation Model (CSPM) is used to determine the shear viscosity to entropy ratio (η/s\eta/s) of the Quark-Gluon Plasma (QGP) produced in Au-Au collisions at sNN\sqrt{s_{NN}} = 200 GeV at RHIC and Pb-Pb at sNN\sqrt{s_{NN}} = 2.76 TeV at LHC. The relativistic kinetic theory relation for η/s\eta/s is evaluated using CSPM values for the temperature and the mean free path of the QGP constituents. The experimental charged hadron transverse momentum spectrum is used to determine the percolation density parameter ξ\xi in Au-Au collisions (STAR). For Pb-Pb at sNN\sqrt{s_{NN}} = 2.76 TeV ξ\xi values are obtained from the extrapolation at RHIC energy. The value of η/s\eta/s is 0.204±\pm0.020 and 0.262±\pm0.026 at the CSPM initial temperatures of 193.6±\pm3 MeV (RHIC) and 262.2 ±\pm13 MeV (LHC) respectively. These values are 2.5 and 3.3 times the AdS/CFT conjectured lower bound 1/4π1/4\pi. We compare the CSPM η/s\eta/s analytic expression with weak coupling (wQGP) and strong coupling (sQGP) calculations. This indicates that the QGP is a strongly coupled fluid in the phase transition region.Comment: 4 pages, 3 figures Accepted for publication in European Physical Journal C (Particles & Fields

    Transport Properties of the Quark-Gluon Plasma -- A Lattice QCD Perspective

    Full text link
    Transport properties of a thermal medium determine how its conserved charge densities (for instance the electric charge, energy or momentum) evolve as a function of time and eventually relax back to their equilibrium values. Here the transport properties of the quark-gluon plasma are reviewed from a theoretical perspective. The latter play a key role in the description of heavy-ion collisions, and are an important ingredient in constraining particle production processes in the early universe. We place particular emphasis on lattice QCD calculations of conserved current correlators. These Euclidean correlators are related by an integral transform to spectral functions, whose small-frequency form determines the transport properties via Kubo formulae. The universal hydrodynamic predictions for the small-frequency pole structure of spectral functions are summarized. The viability of a quasiparticle description implies the presence of additional characteristic features in the spectral functions. These features are in stark contrast with the functional form that is found in strongly coupled plasmas via the gauge/gravity duality. A central goal is therefore to determine which of these dynamical regimes the quark-gluon plasma is qualitatively closer to as a function of temperature. We review the analysis of lattice correlators in relation to transport properties, and tentatively estimate what computational effort is required to make decisive progress in this field.Comment: 54 pages, 37 figures, review written for EPJA and APPN; one parag. added end of section 3.4, and one at the end of section 3.2.2; some Refs. added, and some other minor change

    Centrality dependence of charged particle production at large transverse momentum in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm{NN}}} = 2.76 TeV

    Get PDF
    The inclusive transverse momentum (pTp_{\rm T}) distributions of primary charged particles are measured in the pseudo-rapidity range η<0.8|\eta|<0.8 as a function of event centrality in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm{NN}}}=2.76 TeV with ALICE at the LHC. The data are presented in the pTp_{\rm T} range 0.15<pT<500.15<p_{\rm T}<50 GeV/cc for nine centrality intervals from 70-80% to 0-5%. The Pb-Pb spectra are presented in terms of the nuclear modification factor RAAR_{\rm{AA}} using a pp reference spectrum measured at the same collision energy. We observe that the suppression of high-pTp_{\rm T} particles strongly depends on event centrality. In central collisions (0-5%) the yield is most suppressed with RAA0.13R_{\rm{AA}}\approx0.13 at pT=6p_{\rm T}=6-7 GeV/cc. Above pT=7p_{\rm T}=7 GeV/cc, there is a significant rise in the nuclear modification factor, which reaches RAA0.4R_{\rm{AA}} \approx0.4 for pT>30p_{\rm T}>30 GeV/cc. In peripheral collisions (70-80%), the suppression is weaker with RAA0.7R_{\rm{AA}} \approx 0.7 almost independently of pTp_{\rm T}. The measured nuclear modification factors are compared to other measurements and model calculations.Comment: 17 pages, 4 captioned figures, 2 tables, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/284

    Experimental and Theoretical Challenges in the Search for the Quark Gluon Plasma: The STAR Collaboration's Critical Assessment of the Evidence from RHIC Collisions

    Get PDF
    We review the most important experimental results from the first three years of nucleus-nucleus collision studies at RHIC, with emphasis on results from the STAR experiment, and we assess their interpretation and comparison to theory. The theory-experiment comparison suggests that central Au+Au collisions at RHIC produce dense, rapidly thermalizing matter characterized by: (1) initial energy densities above the critical values predicted by lattice QCD for establishment of a Quark-Gluon Plasma (QGP); (2) nearly ideal fluid flow, marked by constituent interactions of very short mean free path, established most probably at a stage preceding hadron formation; and (3) opacity to jets. Many of the observations are consistent with models incorporating QGP formation in the early collision stages, and have not found ready explanation in a hadronic framework. However, the measurements themselves do not yet establish unequivocal evidence for a transition to this new form of matter. The theoretical treatment of the collision evolution, despite impressive successes, invokes a suite of distinct models, degrees of freedom and assumptions of as yet unknown quantitative consequence. We pose a set of important open questions, and suggest additional measurements, at least some of which should be addressed in order to establish a compelling basis to conclude definitively that thermalized, deconfined quark-gluon matter has been produced at RHIC.Comment: 101 pages, 37 figures; revised version to Nucl. Phys.
    corecore