108 research outputs found

    Phenological changes in the Southern Hemisphere

    Get PDF
    Current evidence of phenological responses to recent climate change is substantially biased towards northern hemisphere temperate regions. Given regional differences in climate change, shifts in phenology will not be uniform across the globe, and conclusions drawn from temperate systems in the northern hemisphere might not be applicable to other regions on the planet. We conduct the largest meta-analysis to date of phenological drivers and trends among southern hemisphere species, assessing 1208 long-term datasets from 89 studies on 347 species. Data were mostly from Australasia (Australia and New Zealand), South America and the Antarctic/subantarctic, and focused primarily on plants and birds. This meta-analysis shows an advance in the timing of spring events (with a strong Australian data bias), although substantial differences in trends were apparent among taxonomic groups and regions. When only statistically significant trends were considered, 82% of terrestrial datasets and 42% of marine datasets demonstrated an advance in phenology. Temperature was most frequently identified as the primary driver of phenological changes; however, in many studies it was the only climate variable considered. When precipitation was examined, it often played a key role but, in contrast with temperature, the direction of phenological shifts in response to precipitation variation was difficult to predict a priori . We discuss how phenological information can inform the adaptive capacity of species, their resilience, and constraints on autonomous adaptation. We also highlight serious weaknesses in past and current data collection and analyses at large regional scales (with very few studies in the tropics or from Africa) and dramatic taxonomic biases. If accurate predictions regarding the general effects of climate change on the biology of organisms are to be made, data collection policies focussing on targeting data-deficient regions and taxa need to be financially and logistically supported

    Mapping a Plasmodium transmission spatial suitability index in Solomon Islands: a malaria monitoring and control tool

    Get PDF
    Following publication of the original article [1], one of the authors flagged that the images for Figs. 2 and 3 were swapped in the published article-Fig. 2 had the image meant for Fig. 3 and vice versa

    Practice Models and Challenges in Teledermatology: A Study of Collective Experiences from Teledermatologists

    Get PDF
    Despite increasing practice of teledermatology in the U.S., teledermatology practice models and real-world challenges are rarely studied.The primary objective was to examine teledermatology practice models and shared challenges among teledermatologists in California, focusing on practice operations, reimbursement considerations, barriers to sustainability, and incentives. We conducted in-depth interviews with teledermatologists that practiced store-and-forward or live-interactive teledermatology from January 1, 2007 through March 30, 2011 in California.Seventeen teledermatologists from academia, private practice, health maintenance organizations, and county settings participated in the study. Among them, 76% practiced store-and-forward only, 6% practiced live-interactive only, and 18% practiced both modalities. Only 29% received structured training in teledermatology. The average number of years practicing teledermatology was 4.29 years (SD±2.81). Approximately 47% of teledermatologists served at least one Federally Qualified Health Center. Over 75% of patients seen via teledermatology were at or below 200% federal poverty level and usually lived in rural regions without dermatologist access. Practice challenges were identified in the following areas. Teledermatologists faced delays in reimbursements and non-reimbursement of teledermatology services. The primary reason for operational inefficiency was poor image quality and/or inadequate history. Costly and inefficient software platforms and lack of communication with referring providers also presented barriers.Teledermatology enables underserved populations to access specialty care. Improvements in reimbursement mechanisms, efficient technology platforms, communication with referring providers, and teledermatology training are necessary to support sustainable practices

    Levels of DNA methylation vary at CpG sites across the BRCA1 promoter, and differ according to triple negative and "BRCA-like" status, in both blood and tumour DNA

    Get PDF
    Triple negative breast cancer is typically an aggressive and difficult to treat subtype. It is often associated with loss of function of the BRCA1 gene, either through mutation, loss of heterozygosity or methylation. This study aimed to measure methylation of the BRCA1 gene promoter at individual CpG sites in blood, tumour and normal breast tissue, to assess whether levels were correlated between different tissues, and with triple negative receptor status, histopathological scoring for BRCA-like features and BRCA1 protein expression. Blood DNA methylation levels were significantly correlated with tumour methylation at 9 of 11 CpG sites examined (p<0.0007). The levels of tumour DNA methylation were significantly higher in triple negative tumours, and in tumours with high BRCA-like histopathological scores (10 of 11 CpG sites; p<0.01 and p<0.007 respectively). Similar results were observed in blood DNA (6 of 11 CpG sites; p<0.03 and 7 of 11 CpG sites; p<0.02 respectively). This study provides insight into the pattern of CpG methylation across the BRCA1 promoter, and supports previous studies suggesting that tumours with BRCA1 promoter methylation have similar features to those with BRCA1 mutations, and therefore may be suitable for the same targeted therapies

    Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits

    Get PDF
    Few genome-wide association studies (GWAS) account for environmental exposures, like smoking, potentially impacting the overall trait variance when investigating the genetic contribution to obesity-related traits. Here, we use GWAS data from 51,080 current smokers and 190,178 nonsmokers (87% European descent) to identify loci influencing BMI and central adiposity, measured as waist circumference and waist-to-hip ratio both adjusted for BMI. We identify 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction (GxSMK) on obesity-related traits. We show consistent direction of effect for all identified loci and significance for 18 novel and for 5 interaction loci in an independent study sample. These loci highlight novel biological functions, including response to oxidative stress, addictive behaviour, and regulatory functions emphasizing the importance of accounting for environment in genetic analyses. Our results suggest that tobacco smoking may alter the genetic susceptibility to overall adiposity and body fat distribution.Peer reviewe

    Association of the PHACTR1/EDN1 genetic locus with spontaneous coronary artery dissection

    Get PDF
    Background: Spontaneous coronary artery dissection (SCAD) is an increasingly recognized cause of acute coronary syndromes (ACS) afflicting predominantly younger to middle-aged women. Observational studies have reported a high prevalence of extracoronary vascular anomalies, especially fibromuscular dysplasia (FMD) and a low prevalence of coincidental cases of atherosclerosis. PHACTR1/EDN1 is a genetic risk locus for several vascular diseases, including FMD and coronary artery disease, with the putative causal noncoding variant at the rs9349379 locus acting as a potential enhancer for the endothelin-1 (EDN1) gene. Objectives: This study sought to test the association between the rs9349379 genotype and SCAD. Methods: Results from case control studies from France, United Kingdom, United States, and Australia were analyzed to test the association with SCAD risk, including age at first event, pregnancy-associated SCAD (P-SCAD), and recurrent SCAD. Results: The previously reported risk allele for FMD (rs9349379-A) was associated with a higher risk of SCAD in all studies. In a meta-analysis of 1,055 SCAD patients and 7,190 controls, the odds ratio (OR) was 1.67 (95% confidence interval [CI]: 1.50 to 1.86) per copy of rs9349379-A. In a subset of 491 SCAD patients, the OR estimate was found to be higher for the association with SCAD in patients without FMD (OR: 1.89; 95% CI: 1.53 to 2.33) than in SCAD cases with FMD (OR: 1.60; 95% CI: 1.28 to 1.99). There was no effect of genotype on age at first event, P-SCAD, or recurrence. Conclusions: The first genetic risk factor for SCAD was identified in the largest study conducted to date for this condition. This genetic link may contribute to the clinical overlap between SCAD and FMD

    Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets From Blood and the Kidney.

    Get PDF
    Elevated blood pressure is a major risk factor for cardiovascular disease and has a substantial genetic contribution. Genetic variation influencing blood pressure has the potential to identify new pharmacological targets for the treatment of hypertension. To discover additional novel blood pressure loci, we used 1000 Genomes Project-based imputation in 150 134 European ancestry individuals and sought significant evidence for independent replication in a further 228 245 individuals. We report 6 new signals of association in or near HSPB7, TNXB, LRP12, LOC283335, SEPT9, and AKT2, and provide new replication evidence for a further 2 signals in EBF2 and NFKBIA Combining large whole-blood gene expression resources totaling 12 607 individuals, we investigated all novel and previously reported signals and identified 48 genes with evidence for involvement in blood pressure regulation that are significant in multiple resources. Three novel kidney-specific signals were also detected. These robustly implicated genes may provide new leads for therapeutic innovation

    Формирование эмоциональной культуры как компонента инновационной культуры студентов

    Get PDF
    Homozygosity has long been associated with rare, often devastating, Mendelian disorders1 and Darwin was one of the first to recognise that inbreeding reduces evolutionary fitness2. However, the effect of the more distant parental relatedness common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity, ROH), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power3,4. Here we use ROH to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts and find statistically significant associations between summed runs of homozygosity (SROH) and four complex traits: height, forced expiratory lung volume in 1 second (FEV1), general cognitive ability (g) and educational attainment (nominal p<1 × 10−300, 2.1 × 10−6, 2.5 × 10−10, 1.8 × 10−10). In each case increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing convincing evidence for the first time that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples5,6, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein (LDL) cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection7, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been

    The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals

    Get PDF
    To dissect the genetic architecture of blood pressure and assess effects on target-organ damage, we analyzed 128,272 SNPs from targeted and genome-wide arrays in 201,529 individuals of European ancestry and genotypes from an additional 140,886 individuals were used for validation. We identified 66 blood pressure loci, of which 17 were novel and 15 harbored multiple distinct association signals. The 66 index SNPs were enriched for cis-regulatory elements, particularly in vascular endothelial cells, consistent with a primary role in blood pressure control through modulation of vascular tone across multiple tissues. The 66 index SNPs combined in a risk score showed comparable effects in 64,421 individuals of non-European descent. The 66-SNP blood pressure risk score was significantly associated with target-organ damage in multiple tissues, with minor effects in the kidney. Our findings expand current knowledge of blood pressure pathways and highlight tissues beyond the classic renal system in blood pressure regulation
    corecore