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Abstract
Triple negative breast cancer is typically an aggressive and difficult to treat subtype. It is

often associated with loss of function of the BRCA1 gene, either through mutation, loss of

heterozygosity or methylation. This study aimed to measure methylation of the BRCA1
gene promoter at individual CpG sites in blood, tumour and normal breast tissue, to assess

whether levels were correlated between different tissues, and with triple negative receptor

status, histopathological scoring for BRCA-like features and BRCA1 protein expression.

Blood DNA methylation levels were significantly correlated with tumour methylation at 9 of

11 CpG sites examined (p<0.0007). The levels of tumour DNAmethylation were signifi-

cantly higher in triple negative tumours, and in tumours with high BRCA-like histopatholog-

ical scores (10 of 11 CpG sites; p<0.01 and p<0.007 respectively). Similar results were

observed in blood DNA (6 of 11 CpG sites; p<0.03 and 7 of 11 CpG sites; p<0.02 respec-

tively). This study provides insight into the pattern of CpG methylation across the BRCA1
promoter, and supports previous studies suggesting that tumours with BRCA1 promoter

methylation have similar features to those with BRCA1mutations, and therefore may be

suitable for the same targeted therapies.
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Introduction
The triple negative (TN) subtype of breast cancer accounts for 10–17% of all breast carcinomas
[1–4]. Triple negative tumours are more likely to be of higher grade, to present with nodal or
distant metastases, and there is a relative lack of effective therapies compared to other cancer
subtypes, which all contribute to poor disease-free and overall survival [5]. By definition, these
tumours are oestrogen receptor (ER) and progesterone receptor (PR) negative and negative for
human epidermal growth factor receptor (HER2). Triple negative tumours are known to be a
heterogeneous group with a significant proportion displaying the basal-like phenotype; with
overexpression of cytokeratin 5/6(CK) and epidermal growth factor receptor (EGFR) proteins.
However, all other molecular subtypes of breast cancer are also present in TN cohorts [6, 7].
Recent comprehensive RNA and DNA profiling analyses have identified at least four distinct
subtypes of triple negative breast cancers that may have specific therapeutic targets based on
their molecular signatures [8, 9].

The Breast Cancer susceptibility gene 1 (BRCA1) is the most commonly mutated gene in
familial breast cancer cases and is strongly associated with both the TN subtype and basal-like
breast tumours [10, 11]. Over 50% of BRCA1mutation-associated tumours are TN [12], how-
ever, BRCA1mutations are rarely found in sporadic breast cancer cases and less than 15% of
TN tumours harbour BRCA1mutations [13–15]. The BRCA1 gene is involved in homologous
recombination DNA repair, which is the least error-prone mechanism for cells to repair dou-
ble-stranded DNA breaks [16]. Cells that lack functional BRCA1, whether it is through muta-
tion, loss of heterozygosity or epigenetic mechanisms, are deficient in homologous
recombination repair. These cells utilise alternative DNA repair mechanisms that are more
error prone, resulting in tumours with high levels of genomic instability [17, 18], a high fre-
quency of TP53 mutations [19] and numerous copy number aberrations [20]. These character-
istic patterns of gains and losses of genomic DNA associated with BRCA1mutant tumours can
be used to identify a larger group of sporadic cancers that are molecularly similar but lack
BRCA1mutations, known as BRCA1-like [20–22]. The term ‘BRCA-ness’ similarly refers to
tumours in which no germline BRCA1mutation has been identified but which share histopath-
ological features frequently found in BRCA1mutated tumours, including a high mitotic index,
pushing borders, syncytial and circumscribed growth patterns [23, 24].

There is considerable evidence that epigenetic mechanisms, in particular hypermethylation
of tumour suppressor gene promoters, represent an alternative method of gene silencing/ inac-
tivation [7, 24–26]. Methylation of the BRCA1 promoter in breast tumours is associated with a
poor overall survival and disease-free survival and has been suggested as a biomarker to guide
prognosis and targeted therapies [27–30]. Severson et al found that germline mutation and
BRCA1 promoter methylation overlap with BRCA1-like status (determined by copy number
aberrations) in 70% and 79% of their samples respectively [20]. Triple negative tumours in
young women with multiple BRCA1-like morphological features are associated with hyper-
methylation of the BRCA1 promoter in blood DNA [23]. However, there remains debate
regarding whether blood and tumour data are concordant for gene specific methylation [31].
Tumour BRCA1 promoter methylation has been reported to predict response to platinum
based chemotherapy agents and Poly(ADP-ribose) polymerase (PARP) inhibitors, therefore
methylation status could potentially influence treatment decisions [32].

In order to examine the relationship between BRCA1 promoter methylation, BRCA1 pro-
tein expression, triple negativity and BRCA1 associated histopathological features we have ana-
lysed blood samples from 658 women with sporadic breast cancer and 170 matched tumour
samples; 71 (11%) and 35 (21%) of these samples were classified as TN respectively.
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Methods

Study population and data collection
The study population comprised women diagnosed with invasive breast cancer at Sheffield
Teaching Hospitals NHS Foundation Trust, UK, recruited as part of the Sheffield Breast Can-
cer Study. The study was approved by the Sheffield Research Ethics Committee, and all women
provided written informed consent. Women were recruited in two cohorts between 1998–2008
and 2009–2014. Women in the earlier cohort were recruited from surgical outpatient clinics,
whilst women in the later cohort were newly diagnosed and recruited at pre-operative assess-
ment. Women with known BRCA1/2 gene mutations were excluded. Data on tumour grade,
receptor status, nodal status and age at diagnosis were obtained from clinical notes, and meno-
pausal status and family history of breast cancer were obtained from the patient by question-
naire administered by a research nurse. Samples from women with triple negative tumours
were preferentially selected for BRCA1 promoter methylation analysis.

Sample collection and DNA isolation
Genomic DNA was extracted from peripheral blood mononuclear cells isolated from 6ml
whole blood or 2ml ‘buffy coat’ samples according to the manufacturer’s protocol (Flexigene
DNA extraction kit, Qiagen). The concentration of extracted DNA was quantified using a
NanoDrop spectrophotometer (Thermo Scientific, ND-1000 software). DNA samples were
stored at -80°C until required. Tumour or normal tissue DNA was isolated following macrodis-
section from five 10 micron paraffin sections per FFPE block (to ensure greater than 80%
tumour cells), and extracted according to the manufacturer’s protocol (QIAamp DNA FFPE
kit, Qiagen). Tumour DNA was eluted in a final volume of 70μl buffer and then quantified
using a NanoDrop Spectrophotometer.

Receptor status
For the 1998–2008 cohort, tumour receptor status for ER, PR and HER2 were determined by
immunohistochemistry of triplicate tumour cores in tissue microarrays, and scored by SSC.
Antibodies were as follows; ER: Vector 6F11/2 (1:50), PR: Vector 1A6 (1:40), HER2: Dako Her-
cepTest Kit (pre-diluted). For the 2009–2014 cohort, ER and HER2 status determined accord-
ing to UK guidelines were obtained from NHS histopathology records.

Morphological scoring
Haematoxylin and Eosin (H&E) staining was performed on one slide per tumour and the slides
were systematically reviewed by a consultant histopathologist (SSC), who scored them for the
presence of nine BRCA1-associated morphological features; high mitotic index, malignant
nuclear grade, little or no (<10%) tubule formation, trabecular growth pattern, syncytial
growth pattern, pushing margins (>50%), circumscribed growth pattern, necrosis, moderate
or intense lymphocytic infiltrate [23, 33].

BRCA1 protein expression
BRCA1 immunohistochemistry was carried out using the anti-BRCA1 (Ab-1) mouse anti-
body (MS110 OP92 Calbiochem) on 5micron FFPE sections at 1:400 dilution as described
previously [36]. MCF-7 cell line cytospins were used to provide positive and negative (no pri-
mary antibody) controls. Slides were scored for BRCA1 nuclear staining by SSC and OW.
The percentage of positive nuclei were scored between 0 and 5, the intensity of nuclear stain-
ing was scored between 0 and 3, then these were added to form the combined score (Allred
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quick score). Tumours with a score equal or less than 4 were deemed to be negative for
BRCA1 expression.

Methylation analysis
Sodium-bisulphite modification of blood and tumour DNA was performed using the CpGe-
nome DNA modification kit (EMDMillipore, USA) according to the manufacturer’s proto-
col, to convert unmethylated cytosine residues to uracil. Sodium bisulphite-treated DNA was
then analysed by pyrosequencing as described previously [34]. Two sets of pyrosequencing
primers were designed for a 313 base pair (bp) region of the BRCA1 promoter using Pyro-
mark assay design software (version 2.0) and are detailed in Table 1. The pyrosequencing
targets contained 11 CpG sites, which included all of those studied by Wong et al plus two
additional adjacent sites (Fig 1) [23, 35]. CpG sites are referred to by their base pair position
relative to the BRCA1 transcription start site (position zero). The oligonucleotides (Sigma
Aldrich, Ebersberg, Germany) were reconstituted with deionised water at a stock concentra-
tion of 100pmol/μl.

PCR was performed using Hotstart taq DNA polymerase (Hotstart PCR kit, Qiagen) under
the following PCR conditions; denaturation at 95°C for 15 minutes followed by 50 cycles of the
following profile; 95°C for 20 seconds, 61°C for 20 seconds, 72°C for 20 seconds followed by a
final 5 minutes extension at 72°C. The PCR products were analysed by gel electrophoresis on a
1.5% Agarose gel stained with ethidium bromide and visualised by UV trans-illumination
prior to pyrosequencing. The 11 CpG sites were analysed by pyrosequencing using PyroMark
Q96 MD and Pyromark Gold reagents (Qiagen AG, Basel, Switzerland). Bisulphite-modified
universally methylated DNA (Chemicon International, NY) and distilled water were included
in each run as positive and negative controls.

Statistical Analysis
Correlation of methylation levels at individual CpG sites between matched tumour and
blood DNA, and between matched pairs of tumour samples was based on Spearman’s rank
correlation coefficient. Methylation levels between matched pairs of samples were com-
pared using the Wilcoxon matched-pairs signed-ranks test. Unmatched groups were com-
pared using the Mann-Whitney test. Associations between different pathological features
were assessed using contingency tables. The data set used for these analyses is provided in
S1 Table. All analyses were implemented in Stata V12.1 and all statistical tests were two-
sided.

Table 1. Details the primer sequences used for pyrosequencing.

5’3’ sequence Strand

Target region 1 F (Biotin)TGATTTAGTATTTTGAGAGGTTGTTGTT Sense

R CAATTATCTAAAAAACCCCACAACCTA Reverse

S CCCACAACCTATCCC Reverse

Target region 2 F GTATTTTTGAGAGGTTGTTGTT Sense

R (Biotin)AAACCCCACAACCTATCC Reverse

S TTTGAGAGGTTGTTGTTTA Sense

Primer orientation: Forward (F), Reverse (R), Sequencing (S).

doi:10.1371/journal.pone.0160174.t001
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Results

Baseline characteristics of cases and controls
Blood methylation analysis was successfully carried out on 658 cases, of whom 170 had suffi-
cient tumour tissue available for methylation analysis; 71 (11%) and 35 (21%) of these were
classified as TN respectively. Normal breast tissue was available for 26 cases, and for 20 cases
two tumour FFPE blocks were available from the same tumour. There were no significant dif-
ferences in baseline demographics (age, menopausal status and history of first degree relative
affected with breast cancer) between those from whom tumours were available and those
where only blood was available (Table 2). However, the cases where tumours were available
were of higher grade (p<0.001), more likely lymph node positive (p = 0.03) and more likely to
be TN (p<0.001) (Table 2), reflecting the fact that cases with TN disease were preferentially
selected for tumour analysis, and that tumours with sufficient tissue available for DNA extrac-
tion tend to be of higher grade and node positive since these features are associated with larger
tumours.

Methylation levels vary between CpG sites, and are higher in tumour
DNA compared to blood DNA
The levels of BRCA1 promoter methylation at 9 of the 11 CpG sites in blood DNA were found
to correlate with methylation at the corresponding sites in matched tumour DNA in the 170
cases for which both were available. Specifically, methylation levels at all sites apart from +27
and +44 were significantly correlated at p<0.0007 (Fig 2A and S2 Table). The levels of methyl-
ation were significantly higher in tumour DNA compared to matched blood DNA at all sites
apart from +16 (p<0.0025; Fig 2A and S2 Table). Blood DNAmethylation levels for subjects
with matched tumour (n = 170) were representative of the larger set of blood DNAmethylation
data (n = 658; Fig 2A). Furthermore, in both blood and tumour DNA there was a distinctive
pattern of methylation around the transcription start site, with higher levels of methylation

Fig 1. Diagram of the 11 CpG sites analysed by pyrosequencing. Individual CpG sites are underlined and numbering is relative to the BRCA1
Transcription Start Site (TSS). The start and end of the two overlapping target regions are detailed. No CpGs were present in the overlapping
section.

doi:10.1371/journal.pone.0160174.g001
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Table 2. Study population demographics according to blood and tumour tissue availability.

All cases with
blood

Cases with
blood only

Cases with blood
and tumour

Blood plus tumour
versus blood only

Cases with two tumour
FFPE blocks

Cases with
normal tissue

Number, n 658 488 170 20 26

Median age at diag
(range)

60 (23–92) 60 (23–92) 58 (24–85) p = 0.52 62.5 (24–84) 58.5 (39–84)

First degree relative
pos

119 (18.1%) 93 (19.1%) 26 (15.3%) 3 (15.0%) 4 (15.4%)

First degree relative
neg

539 (81.9%) 395 (81%) 144 (84.7%) 17 (85.0%) 22 (84.6%)

Total 658 488 170 p = 0.27 20 26

Pre/peri-
menopausal

177 (28.8%) 130 (28.6%) 47 (29.2%) 6 (31.6%) 8 (32%)

Post-menopausal 438 (71.2%) 324 (71.4%) 114 (70.8%) 13 (68.4%) 17 (68%)

Total 615 454 161 p = 0.89 19 25

Tumour grade 1 135 (21.8%) 112 (25%) 23 (14.6%) 0 (0%) 3 (12.0%)

Tumour grade 2 290 (46.8%) 224 (48.6%) 66 (41.8%) 12 (63.2%) 12 (48.0%)

Tumour grade 3 194 (31.3%) 125 (27.1%) 69 (43.7%) 7 (36.8%) 10 (40.0%)

Total 619 461 158 p<0.001 19 25

Lymph node
negative

385 (63.6%) 298 (66.1%) 87 (56.5%) 5 (27.8%) 14 (53.9%)

Lymph node
positive

220 (36.4%) 153 (33.9%) 67 (43.5%) 13 (72.2%) 12 (46.1%)

Total 605 451 154 p = 0.03 18 26

Non Triple Negative
(NTN)

585 (89.2%) 452 (92.6%) 133 (79.2%) 19 (95.0%) 22 (95.7%)

Triple Negative (TN) 71 (10.8%) 36 (7.4%) 35 (20.8%) 1 (5.0%) 1 (4.3%)

Total 656 488 168 p<0.001 20 23

Numbers for each sample group are given in each column. Cases with blood only are compared to cases with blood and tumour available.

doi:10.1371/journal.pone.0160174.t002

Fig 2. Methylation plots comparing blood, tumour and normal breast tissue.Mean (+/-SD) methylation levels plotted against CpG site
position along the chromosome in relation to the BRCA1 transcription start site (position zero). (A) Blood DNAmethylation level is shown in red and
tumour DNAmethylation level in blue for the matched samples (n = 170) and blood DNAmethylation level for the whole sample set is shown in
orange (n = 658). (B) Normal breast tissue DNAmethylation level is shown in green (n = 26) and tumour DNAmethylation level in blue (n = 170).

doi:10.1371/journal.pone.0160174.g002
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at -37 and -29 compared to the other sites (Fig 2A). DNA was available from normal breast tis-
sue for 26 cases. The BRCA1 promoter methylation levels were generally higher in tumour
DNA compared to normal breast tissue DNA, most significantly at -51, -21, -19 and +19
(p<0.03; Fig 2B and S2 Table). For 20 cases, two tumour FFPE blocks from the same tumour
were available. The methylation levels were significantly correlated between the pairs of blocks
for all CpG sites except -51 and +44 (p<0.04; S3 Table).

BRCA1-like morphological features are associated with triple negativity,
loss of BRCA1 protein expression and higher grade
We were able to score 147 tumours for the presence of 9 BRCA1-like morphological features
(Fig 3), and tumours were then grouped according to whether they exhibited five or more fea-
tures [33]. BRCA1 protein expression was assessed by immunohistochemistry in 119 cases (Fig
3). Higher levels of BRCA1 protein expression were associated with fewer BRCA1-like mor-
phological features (p = 0.019; Table 3). The number of morphological features was strongly
associated with triple negativity, larger tumour size and higher grade (p<0.0001, p = 0.034,
p<0.0001 respectively; Table 3).

Levels of both blood and tumour DNA methylation are higher in tumours
with high BRCA1-like features scores
The levels of tumour methylation were significantly higher in cases with tumours having more
than or equal to 5 BRCA1-like features compared to those with less than 5, at all CpG sites
except +44 (p = 0.007 to p<0.0001; Fig 4A and 4B and S4 Table). This pattern was also seen at
the majority of CpG sites in blood DNA, although the differences were less statistically signifi-
cant. Interestingly, the +27 CpG site was an exception, where the levels of blood methylation
were not significantly different in the group with over 5 BRCA1-like features compared to
those with fewer than 5 (p = 0.08 in blood, p<0.0001 in tumour; S4 Table)

Levels of both blood and tumour DNA methylation are higher in triple
negative tumours
Tumour DNA methylation was available for 35 triple-negative cases and 133 non-triple nega-
tive cases, and blood DNA methylation was available for 71 triple-negative and 585 non-triple
negative cases. The levels of both blood and tumour methylation were generally higher in triple
negative tumours compared to non-triple negative, at the majority of CpG sites apart from -51,
-29, +19 and +44 (p value range<0.0001 to 0.03 for blood DNA, and 0.0001 to 0.01 for tumour
DNA; Fig 4C and 4D and S5 Table). Again the +27 CpG site was the exception, with lower
methylation levels in blood DNA of TN cases compared to non-triple negative cases, in con-
trast to the higher levels in tumour DNA from TN cases (p = 0.0008 in blood and p = 0.0003 in
tumour; S5 Table).

Levels of tumour and blood methylation compared to BRCA1 protein
expression levels
There were 38 cases with high BRCA1 protein expression and 81 with low expression for
whom blood and tumour DNA methylation were available. There was no difference in blood
methylation levels at any CpG site between those with high or low levels of BRCA1 expression.
The levels of tumour DNAmethylation were generally higher in the samples with lower levels
of BRCA1 protein although the differences were not statistically significant (Fig 4E and 4F; S6
Table).
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Fig 3. Morphological features and BRCA1 expression.H&Es demonstrating BRCA1 associated morphological features scores. A: Low score
demonstrating good tubule formation, little nuclear pleomorphism, no lymphocytes and no mitoses. B: High score demonstrating syncytial islands, marked
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Discussion

BRCA1 promoter methylation may be used to guide therapy
Tumours arising in women with hereditary BRCA1mutations tend to be TN and basal-like,
features that are associated with a poor prognosis. However, in recent years it has become pos-
sible to exploit the DNA-repair defects in tumours carrying BRCA1 or BRCA2 gene mutations
using PARP inhibitors [37, 38]. The response of BRCA1mutation-associated cancers to both
PARP inhibitors and cisplatin-based chemotherapeutic agents has driven the interest in identi-
fying tumours with a similar DNA-repair deficient phenotype, so that these difficult to treat
patients might also benefit from targeted therapies. DNA methylation of the BRCA1 promoter
is a moderately frequent event in sporadic breast tumours and an alternative mechanism of
BRCA1 inactivation. In vitro studies suggest that cells with BRCA1 CpG island methylation are
also sensitive to PARP1 inhibitors and tumour BRCA1 promoter methylation predicts response
to platinum based chemotherapy agents and PARP inhibitors [32, 39, 40].

A recent meta-analysis of BRCA1 promoter methylation studies reported an association
between BRCA1methylation and BRCA-like clinico-pathological features such as lymph node
metastasis, histological grade 3, ER and PR negativity, triple-negative phenotype and decreased
BRCA1 protein expression [41]. However the majority of studies included in the meta-analysis
used methylation-specific PCR or other methods that do not distinguish individual CpG sites,
limiting mechanistic interpretation. Even a recent study of BRCA1 promoter methylation using
pyrosequencing analysed the results by averaging the methylation levels across all sites, thus
not utilizing the CpG site-specific results generated by pyrosequencing [42]. The considerable
heterogeneity between studies highlights the difficulties in drawing meaningful conclusions
when different CpG sites have been studied, methylation detection methods used, populations
studied and tissues examined [40]. In this study we have used pyrosequencing to distinguish
methylation levels at individual CpG sites in the BRCA1 promoter, and analysed CpG sites that
had been studied in at least three previous studies [23, 43, 44]. We have focused on obtaining a
comprehensive dataset consisting of methylation levels for blood and tumour DNA, BRCA1
protein expression, hormone receptor status, and morphological and clinico-pathological
features.

Blood and tumour methylation levels are related to BRCA-like
phenotypes
We found that there was a strong correlation between methylation levels in blood and tumour
DNA at all CpG sites apart from +27 and +44, with levels in the tumour being consistently

nuclear pleomorphism and heavy lymphocytic infiltrate. C, D&E: IHC performed using BRCA1 specific antibody Ab-1. C: Breast tumour demonstrating
nuclear staining for BRCA1. D: Breast tumour demonstrating lack of nuclear or cytoplasmic staining for BRCA1. E: Normal breast tissue demonstrating
normal nuclear staining for BRCA1. F: Histogram of the number of BRCA1-like morphological features from zero to 9 (n = 147).

doi:10.1371/journal.pone.0160174.g003

Table 3. Morphological feature scoring.

Number of morphological features (n) Mean age in years Median grade Mean size (mm) Number TN (%) BRCA1 expression (%positive)

�5 (53) 57.0 2.8 25.4 26 (76.5) 9 (23.7)

<5 (94) 58.8 2.1 20.7 8 (23.5) 29 (76.3)

p = 0.41 p<0.0001 p = 0.034 p<0.0001 p = 0.019

Comparison of number of BRCA1-like morphological features with clinicopathological features; age, grade, size, TN receptor status and BRCA1 expression.

doi:10.1371/journal.pone.0160174.t003
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higher than those in the blood (or normal breast tissue), at all CpG sites. Whether the strong
correlation between these different tissues reflects independent events, constitutional changes
or global methylation changes secondary to carcinogenesis is beyond the scope of this study
due to its retrospective nature; prospective analyses are required to determine whether blood
methylation could be used as a predictor of tumour methylation [45, 46]. The effect of DNA
methylation on gene expression is complex with both hypo- and hypermethylation at specific
gene regions differentially affecting gene expression [47], however there is limited mechanistic
work on individual CpG sites.

Consistent with previous observations, we found that BRCA1-like morphological features
are correlated with triple negativity, loss of BRCA1 protein expression and higher grade. The
levels of both blood and tumour DNAmethylation at most CpG sites were higher in tumours
with high BRCA1-like features scores and were also higher in triple negative tumours, as was
shown by Wong et al [23]. The overall picture was that the associations in blood DNA were
weaker than those in tumour DNA but in the same direction. The +27 CpG site was an excep-
tion to this general pattern where the associations tended to be in the opposite direction in
blood and tumour DNA. We had limited power to detect associations with BRCA1 protein
expression, and although mean tumour DNAmethylation (at sites +8 to +44 in particular)
were higher in tumours with lower levels of BRCA1 protein, these effects did not reach statisti-
cal significance. Previous studies have shown a relationship between DNA methylation and
BRCA1 protein [24, 48, 49].

Other methylation analysis techniques more commonly used, including MSP (Methylation
Specific PCR), MS-HRM (methylation-sensitive high-resolution melting) Methyl-light and
MS-MLPA (methylation-specific multiplex ligation-dependent probe amplification) do not
give as much detailed information about the methylation status and often quintiles or arbitrary
cut off points are chosen to define ‘methylated’ or ‘unmethylated’ promoters. The meta-analy-
sis by Zhang et al found that over half of the studies included used MSP as their predominant
method for analysing methylation, whilst only one study used pyrosequencing [41, 50]. Meth-
ylation analysis using pyrosequencing is becoming widely used in diagnostics laboratories,
which may drive further translational research [51]. Future studies may need to focus on
appropriate methods of methylation analysis to detect levels in biopsy specimens, particularly
in TN tumours, because of the increasing use of neo-adjuvant chemotherapy.

The distribution of histopathological features, including receptor status, age at diagnosis
and grade, can be used to predict women more likely to harbour germline BRCA1 or BRCA2
mutations [52]. Scoring breast tumours for morphological features associated with ‘BRCAness’,
as has been performed in our study, can be used to help identify which tumours may have
higher levels of promoter methylation [23, 33]. This information could be used in future stud-
ies alongside receptor status, age at diagnosis and histological grade to select a subgroup of
patients for epigenetic and genetic testing and subsequent targeted therapies. The use of
tumour histopathology is gaining acceptance as a way to target costly and time-consuming
genetic testing to ‘at-risk’ individuals based on their tumour characteristics [53].

This study highlights the variability in methylation level at different CpG sites close to the
BRCA1 transcription start site. Methylation levels in tumour are generally greater than those in
blood, and methylation at most sites (apart from +27) increases in triple negative tumours and

Fig 4. Methylation plots comparing blood and tumour for BRCA1-like features, Triple negativity and BRCA1 protein expression.Mean (+/-SD)
methylation levels plotted against CpG site position along the chromosome in relation to the BRCA1 transcription start site (position zero). Blood
methylation level is shown on the left and tumour methylation level on the right. A&B: Tumours with <5 BRCA1-like features are shown in orange and those
with�5 BRCA1-like features are shown in green. C&D: Triple negative tumours are shown in maroon and non-triple negative are shown in teal. E&F:
Tumours with high levels of BRCA1 protein expression are shown in brown and those with low levels are shown in cyan.

doi:10.1371/journal.pone.0160174.g004
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those with a high BRCA1-like features scores. Analysis of BRCA1 promoter methylation may
contribute to strategies for the identification of women who may benefit from PARP inhibition
or other targeted therapies, as has occurred in BRCA associated ovarian cancer [54].

Supporting Information
S1 Table. Data set used for analysis.
(XLSX)

S2 Table. Summary table comparing blood and tumour methylation at individual sites for
matched tumour and blood samples, the full cohort of blood samples and matched normal
and tumour tissue. The paired sign-rank tests have been used.
(XLSX)

S3 Table. Correlation of methylation levels between paired FFPE blocks from the same
tumour determined using Spearman’s rho.
(XLSX)

S4 Table. Comparison between blood and tumour methylation based on scoring of BRCA1
associated features.
(XLSX)

S5 Table. Comparison between blood and tumour methylation based on Triple Negative
(TN) or Non-Triple Negative (NTN) receptor status.
(XLSX)

S6 Table. Comparison between blood and tumour methylation based on the presence or
absence of BRCA1 expression determined by immunohistochemistry (IHC).
(XLSX)

Acknowledgments
We would particularly like to thank all the women who participated in the study. We would
also like to thank the Sheffield Diagnostic Genetics Service and the Leeds Institute of Cancer
and Pathology for use of their pyrosequencing facilities.

Author Contributions
Conceived and designed the experiments: SLD GJB PC IWB LW SSC AC. Performed the
experiments: SLD PC IWB. Analyzed the data: SLD DDC LW SSC AC. Contributed reagents/
materials/analysis tools: SLD GJB PC SAB DDC HEC LW SSC AC. Wrote the paper: SLD GJB
PC SAB DDC IWB HEC OD OW LW SSC AC. Recruited patients: HEC LW AC. Designed
pyrosequencing primers: SLD GJB. Provided pyrosequencing expertise: GJB PC SAB. Per-
formed tumour marking and histological scoring: OD OW SSC.

References
1. Badve S, Dabbs DJ, Schnitt SJ, Baehner FL, Decker T, Eusebi V, et al. Basal-like and triple-negative

breast cancers: a critical review with an emphasis on the implications for pathologists and oncologists.
Mod Pathol. 2011; 24(2):157–67. doi: 10.1038/modpathol.2010.200 PMID: 21076464

2. Reis-Filho JS, Lakhani SR. Breast cancer special types: why bother? J Pathol. 2008; 216(4):394–8.
doi: 10.1002/path.2419 PMID: 18798222

3. Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F, et al. The triple negative paradox: pri-
mary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res. 2007; 13(8):2329–34. PMID:
17438091

Epigenetic Modification of the BRCA1 Gene Promoter and Breast Cancer Phenotype

PLOS ONE | DOI:10.1371/journal.pone.0160174 July 27, 2016 12 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0160174.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0160174.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0160174.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0160174.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0160174.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0160174.s006
http://dx.doi.org/10.1038/modpathol.2010.200
http://www.ncbi.nlm.nih.gov/pubmed/21076464
http://dx.doi.org/10.1002/path.2419
http://www.ncbi.nlm.nih.gov/pubmed/18798222
http://www.ncbi.nlm.nih.gov/pubmed/17438091


4. Dent R, Trudeau M, Pritchard KI, HannaWM, Kahn HK, Sawka CA, et al. Triple-negative breast cancer:
clinical features and patterns of recurrence. Clin Cancer Res. 2007; 13(15 Pt 1):4429–34. PMID:
17671126

5. Hudis CA, Gianni L. Triple-negative breast cancer: an unmet medical need. Oncologist. 2011; 16 Suppl
1:1–11. doi: 10.1634/theoncologist.2011-S1-01 PMID: 21278435

6. Perou CM. Molecular stratification of triple-negative breast cancers. Oncologist. 2011; 16 Suppl 1:61–
70. doi: 10.1634/theoncologist.2011-S1-61 PMID: 21278442

7. FoulkesWD, Stefansson IM, Chappuis PO, Begin LR, Goffin JR, Wong N, et al. Germline BRCA1
mutations and a basal epithelial phenotype in breast cancer. J Natl Cancer Inst. 2003; 95(19):1482–5.
PMID: 14519755

8. Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SA, et al. Comprehensive
genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer
Res. 2015; 21(7):1688–98. doi: 10.1158/1078-0432.CCR-14-0432 PMID: 25208879

9. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human
triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin
Invest. 2011; 121(7):2750–67. doi: 10.1172/JCI45014 PMID: 21633166

10. Turner NC, Reis-Filho JS, Russell AM, Springall RJ, Ryder K, Steele D, et al. BRCA1 dysfunction in
sporadic basal-like breast cancer. Oncogene. 2007; 26(14):2126–32. PMID: 17016441

11. Thike AA, Cheok PY, Jara-Lazaro AR, Tan B, Tan P, Tan PH. Triple-negative breast cancer: clinico-
pathological characteristics and relationship with basal-like breast cancer. Mod Pathol. 2010; 23
(1):123–33. doi: 10.1038/modpathol.2009.145 PMID: 19855377

12. Rummel S, Varner E, Shriver CD, Ellsworth RE. Evaluation of BRCA1 mutations in an unselected
patient population with triple-negative breast cancer. Breast Cancer Res Treat. 2013; 137(1):119–25.
doi: 10.1007/s10549-012-2348-2 PMID: 23192404

13. Evans DG, Howell A, Ward D, Lalloo F, Jones JL, Eccles DM. Prevalence of BRCA1 and BRCA2 muta-
tions in triple negative breast cancer. J Med Genet. 2011; 48(8):520–2. doi: 10.1136/jmedgenet-2011-
100006 PMID: 21653198

14. Futreal PA LQ. BRCA1 mutations in primary breast and ovarian carcinomas. Science. 1994; 266:120–
2. PMID: 7939630

15. Arver B DQ, Chen J, Luo L and Lindblom A. Hereditary breast cancer: a review. Seminars in Cancer
Biology. 2000; 10:271–88. PMID: 10966850

16. Bouwman P, Jonkers J. The effects of deregulated DNA damage signalling on cancer chemotherapy
response and resistance. Nat Rev Cancer. 2012; 12(9):587–98. doi: 10.1038/nrc3342 PMID:
22918414

17. Turner N, Tutt A, Ashworth A. Hallmarks of 'BRCAness' in sporadic cancers. Nat Rev Cancer. 2004; 4
(10):814–9. PMID: 15510162

18. Wang H, Zeng ZC, Bui TA, DiBiase SJ, Qin W, Xia F, et al. Nonhomologous end-joining of ionizing radi-
ation-induced DNA double-stranded breaks in human tumor cells deficient in BRCA1 or BRCA2. Can-
cer Res. 2001; 61(1):270–7. PMID: 11196174

19. Manie E, Vincent-Salomon A, Lehmann-Che J, Pierron G, Turpin E, Warcoin M, et al. High frequency of
TP53 mutation in BRCA1 and sporadic basal-like carcinomas but not in BRCA1 luminal breast tumors.
Cancer Res. 2009; 69(2):663–71. doi: 10.1158/0008-5472.CAN-08-1560 PMID: 19147582

20. Severson TM, Peeters J, Majewski I, Michaut M, Bosma A, Schouten PC, et al. BRCA1-like signature
in triple negative breast cancer: Molecular and clinical characterization reveals subgroups with thera-
peutic potential. Mol Oncol. 2015; 9(8):1528–38. doi: 10.1016/j.molonc.2015.04.011 PMID: 26004083

21. Lips EH, Laddach N, Savola SP, Vollebergh MA, Oonk AM, Imholz AL, et al. Quantitative copy number
analysis by Multiplex Ligation-dependent Probe Amplification (MLPA) of BRCA1-associated breast
cancer regions identifies BRCAness. Breast Cancer Res. 2011; 13(5):R107. doi: 10.1186/bcr3049
PMID: 22032731

22. Schouten PC, van Dyk E, Braaf LM, Mulder L, Lips EH, de Ronde JJ, et al. Platform comparisons for
identification of breast cancers with a BRCA-like copy number profile. Breast Cancer Res Treat. 2013;
139(2):317–27. doi: 10.1007/s10549-013-2558-2 PMID: 23670131

23. Wong EM, Southey MC, Fox SB, Brown MA, Dowty JG, Jenkins MA, et al. Constitutional methylation of
the BRCA1 promoter is specifically associated with BRCA1 mutation-associated pathology in early-
onset breast cancer. Cancer Prev Res (Phila). 2011; 4(1):23–33.

24. Bal A, Verma S, Joshi K, Singla A, Thakur R, Arora S, et al. BRCA1-methylated sporadic breast can-
cers are BRCA-like in showing a basal phenotype and absence of ER expression. Virchows Arch.
2012; 461(3):305–12. doi: 10.1007/s00428-012-1286-z PMID: 22820987

Epigenetic Modification of the BRCA1 Gene Promoter and Breast Cancer Phenotype

PLOS ONE | DOI:10.1371/journal.pone.0160174 July 27, 2016 13 / 15

http://www.ncbi.nlm.nih.gov/pubmed/17671126
http://dx.doi.org/10.1634/theoncologist.2011-S1-01
http://www.ncbi.nlm.nih.gov/pubmed/21278435
http://dx.doi.org/10.1634/theoncologist.2011-S1-61
http://www.ncbi.nlm.nih.gov/pubmed/21278442
http://www.ncbi.nlm.nih.gov/pubmed/14519755
http://dx.doi.org/10.1158/1078-0432.CCR-14-0432
http://www.ncbi.nlm.nih.gov/pubmed/25208879
http://dx.doi.org/10.1172/JCI45014
http://www.ncbi.nlm.nih.gov/pubmed/21633166
http://www.ncbi.nlm.nih.gov/pubmed/17016441
http://dx.doi.org/10.1038/modpathol.2009.145
http://www.ncbi.nlm.nih.gov/pubmed/19855377
http://dx.doi.org/10.1007/s10549-012-2348-2
http://www.ncbi.nlm.nih.gov/pubmed/23192404
http://dx.doi.org/10.1136/jmedgenet-2011-100006
http://dx.doi.org/10.1136/jmedgenet-2011-100006
http://www.ncbi.nlm.nih.gov/pubmed/21653198
http://www.ncbi.nlm.nih.gov/pubmed/7939630
http://www.ncbi.nlm.nih.gov/pubmed/10966850
http://dx.doi.org/10.1038/nrc3342
http://www.ncbi.nlm.nih.gov/pubmed/22918414
http://www.ncbi.nlm.nih.gov/pubmed/15510162
http://www.ncbi.nlm.nih.gov/pubmed/11196174
http://dx.doi.org/10.1158/0008-5472.CAN-08-1560
http://www.ncbi.nlm.nih.gov/pubmed/19147582
http://dx.doi.org/10.1016/j.molonc.2015.04.011
http://www.ncbi.nlm.nih.gov/pubmed/26004083
http://dx.doi.org/10.1186/bcr3049
http://www.ncbi.nlm.nih.gov/pubmed/22032731
http://dx.doi.org/10.1007/s10549-013-2558-2
http://www.ncbi.nlm.nih.gov/pubmed/23670131
http://dx.doi.org/10.1007/s00428-012-1286-z
http://www.ncbi.nlm.nih.gov/pubmed/22820987


25. Esteller M, Silva JM, Dominguez G, Bonilla F, Matias-Guiu X, Lerma E, et al. Promoter hypermethyla-
tion and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst. 2000; 92
(7):564–9. PMID: 10749912

26. Pang D, Zhao Y, XueW, Shan M, Chen Y, Zhang Y, et al. Methylation profiles of the BRCA1 promoter
in hereditary and sporadic breast cancer among Han Chinese. Med Oncol. 2012; 29(3):1561–8. doi:
10.1007/s12032-011-0100-0 PMID: 22076508

27. Zhu X, Shan L, Wang F, Wang J, Wang F, Shen G, et al. Hypermethylation of BRCA1 gene: implication
for prognostic biomarker and therapeutic target in sporadic primary triple-negative breast cancer.
Breast Cancer Res Treat. 2015; 150(3):479–86. doi: 10.1007/s10549-015-3338-y PMID: 25783183

28. Wu L, Wang F, Xu R, Zhang S, Peng X, Feng Y, et al. Promoter methylation of BRCA1 in the prognosis
of breast cancer: a meta-analysis. Breast Cancer Res Treat. 2013; 142(3):619–27. doi: 10.1007/
s10549-013-2774-9 PMID: 24258259

29. Guo T, Ren Y, Wang B, Huang Y, Jia S, TangW, et al. Promoter methylation of is associated with estro-
gen, progesterone and human epidermal growth factor receptor-negative tumors and the prognosis of
breast cancer: A meta-analysis. Mol Clin Oncol. 2015; 3(6):1353–60. PMID: 26807247

30. Xu X, GammonMD, Zhang Y, Bestor TH, Zeisel SH, Wetmur JG, et al. BRCA1 promoter methylation is
associated with increased mortality among women with breast cancer. Breast Cancer Res Treat. 2009;
115(2):397–404. doi: 10.1007/s10549-008-0075-5 PMID: 18521744

31. Cho YH, McCullough LE, GammonMD, Wu HC, Zhang YJ, Wang Q, et al. Promoter Hypermethylation
in White Blood Cell DNA and Breast Cancer Risk. J Cancer. 2015; 6(9):819–24. doi: 10.7150/jca.12174
PMID: 26284132

32. Veeck J, Ropero S, Setien F, Gonzalez-Suarez E, Osorio A, Benitez J, et al. BRCA1 CpG island hyper-
methylation predicts sensitivity to poly(adenosine diphosphate)-ribose polymerase inhibitors. J Clin
Oncol. 2010; 28(29):e563–4; author reply e5-6. doi: 10.1200/JCO.2010.30.1010 PMID: 20679605

33. Southey MC, Ramus SJ, Dowty JG, Smith LD, Tesoriero AA, Wong EE, et al. Morphological predictors
of BRCA1 germline mutations in young women with breast cancer. Br J Cancer. 2011; 104(6):903–9.
doi: 10.1038/bjc.2011.41 PMID: 21343941

34. Tost J, Gut IG. DNAmethylation analysis by pyrosequencing. Nat Protoc. 2007; 2(9):2265–75. PMID:
17853883

35. Wojdacz TK, Hansen LL, Dobrovic A. A new approach to primer design for the control of PCR bias in
methylation studies. BMC Res Notes. 2008; 1:54. doi: 10.1186/1756-0500-1-54 PMID: 18710507

36. Wilson CA, Ramos L, Villasenor MR, Anders KH, Press MF, Clarke K, et al. Localization of human
BRCA1 and its loss in high-grade, non-inherited breast carcinomas. Nat Genet. 1999; 21(2):236–40.
PMID: 9988281

37. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, et al. Specific killing of BRCA2-defi-
cient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005; 434(7035):913–7. PMID:
15829966

38. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, et al. Targeting the DNA repair
defect in BRCAmutant cells as a therapeutic strategy. Nature. 2005; 434(7035):917–21. PMID:
15829967

39. Cai F, Ge I, Wang M, Biskup E, Lin X, Zhong X. Pyrosequencing analysis of BRCA1methylation level
in breast cancer cells. Tumour Biol. 2014; 35(4):3839–44. doi: 10.1007/s13277-013-1508-2 PMID:
24337974

40. Ibragimova I, Cairns P. Assays for hypermethylation of the BRCA1 gene promoter in tumor cells to pre-
dict sensitivity to PARP-inhibitor therapy. Methods Mol Biol. 2011; 780:277–91. doi: 10.1007/978-1-
61779-270-0_17 PMID: 21870267

41. Zhang L, Long X. Association of BRCA1 promoter methylation with sporadic breast cancers: Evidence
from 40 studies. Sci Rep. 2015; 5:17869. doi: 10.1038/srep17869 PMID: 26643130

42. Cai FF, Chen S, Wang MH, Lin XY, Zhang L, Zhang JX, et al. Pyrosequencing quantified methylation
level of BRCA1 promoter as prognostic factor for survival in breast cancer patient. Oncotarget. 2016.

43. Rice JC, Ozcelik H, Maxeiner P, Andrulis I, Futscher BW. Methylation of the BRCA1 promoter is associ-
ated with decreased BRCA1 mRNA levels in clinical breast cancer specimens. Carcinogenesis. 2000;
21(9):1761–5. PMID: 10964110

44. Snell C, Krypuy M, Wong EM, kConFab i, Loughrey MB, Dobrovic A. BRCA1 promoter methylation in
peripheral blood DNA of mutation negative familial breast cancer patients with a BRCA1 tumour pheno-
type. Breast Cancer Res. 2008; 10(1):R12. doi: 10.1186/bcr1858 PMID: 18269736

45. Terry MB, Delgado-Cruzata L, Vin-Raviv N, Wu HC, Santella RM. DNAmethylation in white blood cells:
association with risk factors in epidemiologic studies. Epigenetics. 2011; 6(7):828–37. PMID:
21636973

Epigenetic Modification of the BRCA1 Gene Promoter and Breast Cancer Phenotype

PLOS ONE | DOI:10.1371/journal.pone.0160174 July 27, 2016 14 / 15

http://www.ncbi.nlm.nih.gov/pubmed/10749912
http://dx.doi.org/10.1007/s12032-011-0100-0
http://www.ncbi.nlm.nih.gov/pubmed/22076508
http://dx.doi.org/10.1007/s10549-015-3338-y
http://www.ncbi.nlm.nih.gov/pubmed/25783183
http://dx.doi.org/10.1007/s10549-013-2774-9
http://dx.doi.org/10.1007/s10549-013-2774-9
http://www.ncbi.nlm.nih.gov/pubmed/24258259
http://www.ncbi.nlm.nih.gov/pubmed/26807247
http://dx.doi.org/10.1007/s10549-008-0075-5
http://www.ncbi.nlm.nih.gov/pubmed/18521744
http://dx.doi.org/10.7150/jca.12174
http://www.ncbi.nlm.nih.gov/pubmed/26284132
http://dx.doi.org/10.1200/JCO.2010.30.1010
http://www.ncbi.nlm.nih.gov/pubmed/20679605
http://dx.doi.org/10.1038/bjc.2011.41
http://www.ncbi.nlm.nih.gov/pubmed/21343941
http://www.ncbi.nlm.nih.gov/pubmed/17853883
http://dx.doi.org/10.1186/1756-0500-1-54
http://www.ncbi.nlm.nih.gov/pubmed/18710507
http://www.ncbi.nlm.nih.gov/pubmed/9988281
http://www.ncbi.nlm.nih.gov/pubmed/15829966
http://www.ncbi.nlm.nih.gov/pubmed/15829967
http://dx.doi.org/10.1007/s13277-013-1508-2
http://www.ncbi.nlm.nih.gov/pubmed/24337974
http://dx.doi.org/10.1007/978-1-61779-270-0_17
http://dx.doi.org/10.1007/978-1-61779-270-0_17
http://www.ncbi.nlm.nih.gov/pubmed/21870267
http://dx.doi.org/10.1038/srep17869
http://www.ncbi.nlm.nih.gov/pubmed/26643130
http://www.ncbi.nlm.nih.gov/pubmed/10964110
http://dx.doi.org/10.1186/bcr1858
http://www.ncbi.nlm.nih.gov/pubmed/18269736
http://www.ncbi.nlm.nih.gov/pubmed/21636973


46. Brennan K, Garcia-Closas M, Orr N, Fletcher O, Jones M, Ashworth A, et al. Intragenic ATMmethyla-
tion in peripheral blood DNA as a biomarker of breast cancer risk. Cancer Res. 2012; 72(9):2304–13.
doi: 10.1158/0008-5472.CAN-11-3157 PMID: 22374981

47. Gyorffy B, Bottai G, Fleischer T, Munkacsy G, Budczies J, Paladini L, et al. Aberrant DNAmethylation
impacts gene expression and prognosis in breast cancer subtypes. Int J Cancer. 2016; 138(1):87–97.
doi: 10.1002/ijc.29684 PMID: 26174627

48. Ignatov T, Poehlmann A, Ignatov A, Schinlauer A, Costa SD, Roessner A, et al. BRCA1 promoter meth-
ylation is a marker of better response to anthracycline-based therapy in sporadic TNBC. Breast Cancer
Res Treat. 2013; 141(2):205–12. doi: 10.1007/s10549-013-2693-9 PMID: 24026861

49. Stefansson OA, Jonasson JG, Olafsdottir K, Hilmarsdottir H, Olafsdottir G, Esteller M, et al. CpG island
hypermethylation of BRCA1 and loss of pRb as co-occurring events in basal/triple-negative breast can-
cer. Epigenetics. 2011; 6(5):638–49. doi: 10.4161/epi.6.5.15667 PMID: 21593597

50. Sturgeon SR, Balasubramanian R, Schairer C, Muss HB, Ziegler RG, Arcaro KF. Detection of promoter
methylation of tumor suppressor genes in serum DNA of breast cancer cases and benign breast dis-
ease controls. Epigenetics. 2012; 7(11):1258–67. doi: 10.4161/epi.22220 PMID: 22986510

51. Newton K, Jorgensen NM, Wallace AJ, Buchanan DD, Lalloo F, McMahon RF, et al. Tumour MLH1 pro-
moter region methylation testing is an effective prescreen for Lynch Syndrome (HNPCC). J Med Genet.
2014; 51(12):789–96. doi: 10.1136/jmedgenet-2014-102552 PMID: 25280751

52. Spurdle AB, Couch FJ, Parsons MT, McGuffog L, Barrowdale D, Bolla MK, et al. Refined histopatholog-
ical predictors of BRCA1 and BRCA2 mutation status: a large-scale analysis of breast cancer charac-
teristics from the BCAC, CIMBA, and ENIGMA consortia. Breast Cancer Res. 2014; 16(6):3419. doi:
10.1186/s13058-014-0474-y PMID: 25857409

53. Hopper JL, Jenkins MA, Dowty JG, Dite GS, Apicella C, Keogh L, et al. Using tumour pathology to iden-
tify people at high genetic risk of breast and colorectal cancers. Pathology. 2012; 44(2):89–98. doi: 10.
1097/PAT.0b013e32834e8e5b PMID: 22198256

54. De Picciotto N, CacheuxW, Roth A, Chappuis PO, Labidi-Galy SI. Ovarian cancer: Status of homolo-
gous recombination pathway as a predictor of drug response. Crit Rev Oncol Hematol. 2016; 101:50–9.
doi: 10.1016/j.critrevonc.2016.02.014 PMID: 26964893

Epigenetic Modification of the BRCA1 Gene Promoter and Breast Cancer Phenotype

PLOS ONE | DOI:10.1371/journal.pone.0160174 July 27, 2016 15 / 15

http://dx.doi.org/10.1158/0008-5472.CAN-11-3157
http://www.ncbi.nlm.nih.gov/pubmed/22374981
http://dx.doi.org/10.1002/ijc.29684
http://www.ncbi.nlm.nih.gov/pubmed/26174627
http://dx.doi.org/10.1007/s10549-013-2693-9
http://www.ncbi.nlm.nih.gov/pubmed/24026861
http://dx.doi.org/10.4161/epi.6.5.15667
http://www.ncbi.nlm.nih.gov/pubmed/21593597
http://dx.doi.org/10.4161/epi.22220
http://www.ncbi.nlm.nih.gov/pubmed/22986510
http://dx.doi.org/10.1136/jmedgenet-2014-102552
http://www.ncbi.nlm.nih.gov/pubmed/25280751
http://dx.doi.org/10.1186/s13058-014-0474-y
http://www.ncbi.nlm.nih.gov/pubmed/25857409
http://dx.doi.org/10.1097/PAT.0b013e32834e8e5b
http://dx.doi.org/10.1097/PAT.0b013e32834e8e5b
http://www.ncbi.nlm.nih.gov/pubmed/22198256
http://dx.doi.org/10.1016/j.critrevonc.2016.02.014
http://www.ncbi.nlm.nih.gov/pubmed/26964893

