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Abstract 

 

Background. Spontaneous coronary artery dissection (SCAD) is an increasingly recognized 
cause of acute coronary syndromes (ACS) predominantly afflicting younger to middle-aged 
women. Observational studies have reported a high prevalence of extra-coronary vascular 
anomalies, especially fibromuscular dysplasia (FMD) and a low prevalence of co-incident 
atherosclerosis. PHACTR1/EDN1 is a genetic risk locus for several vascular diseases, 
including FMD and coronary artery disease (CAD) with the putative causal variant at the 
locus (rs9349379) acting as  a putative enhancer for the endothelin-1 gene (EDN1).  
Objective. To test the association between rs9349379 genotype and SCAD and with plasma 
endothelin-1 (ET-1) levels.  
Methods. Case control studies from France, UK, USA and Australia were analyzed to test the 
association with SCAD risk, age at first event, pregnancy-associated (P-SCAD) and recurrent 
SCAD. Plasma endothelin-1 (ET-1) levels in SCAD patients were compared by genotype.  
Results. The previously reported risk allele for FMD (rs9349379-A) was associated with a 
higher risk of SCAD in all studies. In a meta-analysis totaling 1,055 SCAD patients and 7,190 
controls the odds ratio was 1.67 (95% CI: 1.50-1.86) per copy of rs9349379-A. There was no 
effect of genotype on age at first event, P-SCAD or recurrence. In 180 SCAD patients 
circulating ET-1 levels were lower in those carrying rs9349379-A (P<0.05). 
Conclusions. We identify the first genetic risk factor for SCAD in the largest study conducted 
so far for this condition. This genetic link may contribute to the clinical overlap between 
SCAD and FMD.  
 
Keywords 
Myocardial infarction, cardiovascular disease in women, fibromuscular dysplasia, genetic 

association. 
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AMI – Acute myocardial infarction 
CAD- coronary artery disease 
SCAD – spontaneous coronary artery dissection 
P-SCAD – pregnancy-associated spontaneous coronary artery dissection 
FMD – fibromuscular dysplasia 
CeAD – cevico-cerebral artery dissection 
PHACTR1: phosphatase and actin regulatory gene 1 
EDN1: the endothelin gene 
ET-1 endothelin 1 
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Figure1. Meta-analysis forest plot association with SCAD 
Figure2. ET-1 levels by genotype  
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Introduction 

Spontaneous coronary artery dissection (SCAD) is an increasingly recognized cause of 

unheralded acute myocardial infarction (AMI) (1,2). It afflicts predominantly young to 

middle-aged women accounting for 23-36% of AMI in this population (3-6) and is a rare 

cause of sudden cardiac death (7). SCAD is also the most common etiology of pregnancy-

associated AMI although this group accounts for only 2-18% of all SCAD cases (8,9). SCAD 

is caused by the development of an intimal tear and flap or an intramural hematoma in the 

outer third of the tunica media of the vessel wall, which leads to external compression of the 

true lumen and coronary insufficiency, myocardial ischemia and infarction (10).  

 

The causes of SCAD are poorly understood. Women with SCAD are typically not overweight 

and do not have high atherosclerotic CAD risk. In observational studies, SCAD has been 

associated with high prevalence of extra-coronary arteriopathies, especially fibromuscular 

dysplasia (FMD) (1,2,11-16). FMD is a non-inflammatory non-atherosclerotic disease of 

medium sized arteries, which may lead to complications arising from arterial stenosis, 

aneurysms or dissections (17,18). It most commonly involves renal, carotid and iliac arteries 

but any arterial bed may be affected. The clinical overlap between SCAD and FMD includes a 

predilection for young to middle-aged women and a low prevalence of co-existent 

atherosclerotic disease (19,20).  

 

Occasional familial cases of SCAD have been reported mainly in siblings or mother-daughter  

pairs (21). Hereditary connective tissue disorders appear rare accounting for <5% of SCAD 

cases and genetic screening for mutations in known connective tissue genes in SCAD-

survivors has a low yield (22,23), similar to genetic screening in FMD (24). The extent to 

which common genetic variants might affect susceptibility to SCAD is unknown. 
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PHACTR1/EDN1 is a genetic locus on chromosome 6q24 reported to confer risk for CAD and 

AMI (25,26). PHACTR1/EDN1 is also associated with migraine (27) and cervical artery 

dissection (28). The putative causal genetic variant at the PHACTR1 locus has recently 

reported to lie in a putative enhancer for EDN1, the endothelin-1 gene (29). We have recently 

shown that this variant is also associated with risk of FMD (30). Interestingly, the common 

allele, rs9349379-A, is associated with increased risk for FMD, migraine and CeAD, while 

the minor allele, rs9349379-G, associates with increased risk for atherosclerotic CAD and 

AMI (31).  Here we aimed to investigate the association of rs9349379 with SCAD to assess 

whether, at this locus, SCAD is genetically closer to FMD, given their clinical overlap, or to 

atherosclerotic CAD and AMI.  

 
Methods  
 

Study populations 

Participants included in this study were all of European descent predominantly from four 

different countries. The diagnosis of SCAD was confirmed by review of the index coronary 

angiogram by an experienced interventional cardiologist with expertise in the recognition of 

SCAD along with contemporaneous medical records. Individuals without a diagnostic 

angiogram were excluded from this analysis.  All participants provided written informed 

consent and all individual studies were approved by national and/ institutional review boards. 

Genotypes were provided from different platforms in each of the four studies and the 

genotype distributions did not significantly deviate from Hardy-Weinberg Equilibrium 

(Online Table 1). 

 

French patients were prospectively and retrospectively recruited through the DISCO protocol, 

an ongoing nation-wide study aiming to assess the presence of FMD and its genetic 

determinants in a sample for haematoma or SCAD (Clinical Trials ID: NCT02799186, 
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approved by regional committee CPP Sud-Est 6 2016 AU-1258). DNAs from patients were 

genotyped by direct sequencing. PPS3 controls were healthy volunteers ascertained from the 

Paris Prospective Study 3 (PPS3 Clinical Trials ID: NCT00741728, approved by CPP No. 

2007-A01386-47), an ongoing observational French prospective study evaluating the possible 

implication of vascular health parameters in cardiovascular disease in healthy subjects and 

was described previously (30,32). 

 

The UK SCAD study is ethically approved by the NHS Health Research Authority 

(14/EM/0056) subjects were recruited from the UK mainland and were genotyped by 

TaqMan® assay. Controls were ascertained randomly and gender matched to cases (3 controls 

to 1 case) from the 1958 Birth Cohort study, a representative sample of the general population 

as previously described (26,33). The 1958 Birth Cohort genotypes were extracted from 

the Metabochip array, a custom iSELECT chip (Illumina®)(31).  

 

SCAD patients were recruited to the Mayo Clinic’s Genetic Investigations in Spontaneous 

Coronary Artery Dissection (SCAD) study (NCT01427179) from the Mayo Clinic patient 

population, including local residents, self-and physician-referred patients and individuals who 

contacted investigators via the study website (www.mayo.edu/research/SCAD), and social 

media. A majority of individuals lived in the USA (95%), with the remainder residing among 

6 other countries. Median age at first event was 45 years (range 19-74 years) and the median 

time to second event was 16 years, with a median follow-up interval of 3 years. Genotyping 

was performed by the Mayo Clinic Medical Genome Facility Genotyping Core, extracting 

genotypes for rs9349379 from an Infinium Omni Express Array platform.  Non-SCAD 

controls, matched for race and sex, were identified among previously genotyped individuals 

in the Mayo Genome Consortia, Center for Individualized Medicine.(34) Diagnostic codes 
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were used to exclude patients with atherosclerotic CAD, AMI, FMD, arterial 

aneurysm/dissection, cerebral infarction, Marfan syndrome, or Ehlers-Danlos syndrome. 

Genotypes were extracted from Illumina 550, 610, 660, and OmniExpress platforms. 

 

Patients from Australia were identified largely through a social media platform. The study 

was approved by the Human Research Ethics Committee of St. Vincent’s Hospital, Sydney. 

Genotyping was performed by Sanger sequencing (Garvan Molecular Genetics, Australia, 

NATA ISO17025 and ISO15189 certified). This case control study also included USA 

patients recruited at the Icahn School of Medicine at Mount Sinai, New York (NY) under the 

DEFINE-FMD protocol (NCT01967511). The protocol is approved by the Human Research 

Ethics Committee of the Icahn School of Medicine at Mount Sinai. Genotyping was by 

Illumina Human OmniExpressExome and direct sequencing. Controls were healthy subjects 

all >70 years old, available through the Medical Genome Reference Bank (MGRB) that 

involves genomic data performed by the Kinghorn Centre for Clinical Genomics, Australia.  

 

To compare the association of rs9349379 with SCAD and that with CAD, we undertook sex-

specific association of rs9349379 in the meta-analysis of GWAS dataset of CAD assembled 

by the CARDIoGRAMPlusC4D consortium that included 43,171 MI cases and 127,176 

controls, 9,105 women with CAD and 30,428 women controls, and 30,428 men with CAD 

and 36,042 men controls (26).  

 

Endothelin-1 measurements  

Endothelin-1 was measured in EDTA-anticoagulated plasma samples from a sub-sample of 

180 patients from the UK cohort using a commercially available sandwich ELISA kit, 
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according to the manufacturer's instructions (Endothelin-1 Quantikine ELISA 

Kit (DET100), R&D systems, Abingdon, UK). 

 
Statistical methods 

To estimate the association between rs9349379 and SCAD, we compared genotype 

distributions between cases and controls in four independent studies. Analyses were 

performed using R (V 3.3.1 and V 3.4.3), PLINK (V1.07 or V 1.9), SAS (V9.4) or STATA 

(V15.1). Associations under the additive genetic model were estimated using logistic 

regression adjusted for age and sex when relevant. In the UK study controls were from a birth 

cohort and were all 44 years old. Controls in the Mayo Clinic study were older and were 

matched for sex and ethnic group to cases.  

To estimate the global effect on SCAD, we used a fixed-effects inverse-variance weighted 

method, which combines the beta’s (log-odds ratios) weighting by the inverse variance of the 

log-odds estimate, therefore accounting for study sample size.  

The association with age of first SCAD occurrence was estimated using linear (age 

continuous) or logistic (SCAD before 40 years) regression. The genetic effect on P-SCAD 

under the additive model was only analyzed in women using logistic regression analyses and 

time to recurrent SCAD using Cox proportional hazards regression. The meta-analyzed effect 

was estimated using the same method employed for global association. ET-1 levels were 

inverse normal transformed using a rank-based transformation prior to statistical comparisons, 

which enables all data to fit within ± 3 standard deviations. Levels by genotypes were 

assessed using linear regression adjusted for age and sex.  
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Results 

 

Clinical characteristics 

Table 1 summarizes the clinical characteristics of the 1,055 patients and 7,190 controls 

studied to estimate the association between rs9349379 and SCAD. Cases were recruited 

through diverse settings, including clinician referral to a national registry (French study), 

social media platforms and a combination of both patient and physician referrals (UK, Mayo 

Clinic and Australia/Mount Sinai studies) and show overall similar clinical characteristics. 

SCAD patients were mostly women (87-96%) whose SCAD event occurred in middle age. P-

SCAD or recurrence each occurred in approximately 10% of cases, as estimated from 

three of four cohorts where this information was available. 

 

Association of rs9349379 with SCAD 

The rs9349379-A allele showed higher prevalence among SCAD patients and was estimated 

to 0.72 in the 1,100 patients studied, compared to 0.56 in controls and was significantly 

associated with increased risk for SCAD (Table 2). Under the additive model, the OR per risk 

allele increment was estimated to 1.67 (95%CI: 1.50 to 1.86, P=1.10 × 10-21) in the combined 

meta-analysis (Table 2, Figure 1). Overall, Cochran Q statistic did not show evidence for 

heterogeneity among any of the combined meta-analysis (Table 2).  

 

Prevalence of rs9349379 in SCAD subgroups 

We did not identify an effect of the risk allele distribution on age of first SCAD patients,), P- 

SCAD occurrence, defined as SCAD during pregnancy or ≤12 weeks postpartum or recurrent 

SCAD, defined as de novo SCAD unrelated to the index dissection and affecting different 

coronary artery segments (Online Table 2).  
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Association with circulating ET-1  

ET-A was measured in a subsample of the UK SCAD patients with overall similar clinical 

characteristics of the patients studied in the UK case control study (98% women, mean age 

46.7 ±8.01 years old). In accordance with a previous study conducted for coronary artery 

disease, we observe significant correlation between lower levels of endothelin-1 in plasma in 

patients carrying the carrying the rs9349379-A allele at risk for SCAD (Figure 2, analysis was 

performed under the dominant model GG vs. AG+AA, P<0.05).  

 

Discussion 

A first genetic risk variant for SCAD protective against atherosclerotic MI 

In this large genetic study conducted on >1,000 SCAD patients and 7,200 controls we report 

robust and replicated association between rs9349379, a common noncoding variant in the 

PHACTR1 locus, and the risk of SCAD. This first reported genetic risk locus for SCAD is 

estimated to contribute to an increased risk of 70% among carriers of the A allele but did not 

partition with age or specific phenotypic subgroups, especially recurrent and P-SCAD.  

 

A genetic link between SCAD and FMD 

FMD has been reported at high prevalence (up to 86%) in SCAD patients in multiple 

observational studies (1,2,11-13,15,16,35). A recent case report described evidence for 

histological FMD in a coronary of a patient who died from SCAD (36). The finding of an 

association between rs9349379 and SCAD risk provides a molecular rationale for this clinical 

observation given rs9349379 has also recently been established as a risk variant for FMD 

(30). Compared to FMD, the prevalence of the risk allele is higher among SCAD patients 

(FreqFMD=0.69 vs. FreqSCAD=0.72, P for trend = 0.06), with slightly overlapping estimation of 
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risk for both diseases (ORFMD 95%CI: 1.25-1.54 vs. ORSCAD 95%CI: 1.50-1.86, Figure 1, 

Central Illustration). However, samples sizes in both FMD and SCAD analyses are relatively 

modest and larger cohorts will be required to confirm this trend for a higher prevalence of the 

rs9349379-A allele in SCAD compared to FMD. These findings do however support the 

hypothesis that SCAD, like FMD may be a complex genetic disease involving multiple 

genetic risk factors each exerting a moderate effect in response to environmental triggers.  

SCAD and atherosclerotic CAD/AMI 

Observational studies in SCAD have noted a low frequency of co-incident atherosclerotic 

CAD. Interestingly, rs9349379 is also a well-established risk locus for CAD and MI.(26) The 

association of the protective allele for CAD/MI with SCAD provides a genetic explanation for 

this observation in that the allele that increases the risk of SCAD is identical in FMD but 

opposite to the risk allele for CAD and MI, including restricted to women (Central 

Illustration) (26).  

 

A genetic link between SCAD and several neurovascular diseases 

In addition to providing an explanation for the clinical association between SCAD and FMD, 

rs9349379 also links SCAD with both cervical artery dissection (CeAD), a rare condition 

defined as an intimal flap or intramural hematoma in a carotid or vertebral artery and a cause 

of stroke (28), and migraine (27). Importantly, rs9349379-A is a reported risk allele for both 

these disorders. A higher prevalence of migraine has been consistently described in 

observational studies of SCAD patients ranging from 33-43% compared to a population 

prevalence of ~15%.(37-39) Although the population incidence of CeAD is rare, there are 

multiple series describing CeAD in SCAD patients either preceding the SCAD event or 

discovered during follow-up imaging, usually in association with cervical FMD (11,16,40). 

However, further global genetic investigation is required through full genome-wide 
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association studies both in SCAD and FMD to assess the extent to which CeAD shares 

genetic susceptibility with these diseases.   

 

Potential regulatory mechanisms of rs9349379  

The involvement of the same genetic variant in a diverse panel of cardiovascular and 

neurovascular diseases is intriguing and the underlying mechanisms remain to be fully 

elucidated. Initial molecular investigation at this locus was focused on the closest gene that 

codes for PHACTR1, a phosphatase and actin regulator protein suggested to be involved in 

angiogenesis and cell migration (41). rs9349379 is intronic to PHACTR1 and maps 54 

kilobases (Kb) upstream of a transcription start site (TSS) that was reported to be activated in 

endothelial and smooth muscle cells from arteries and about 265 Kb upstream of another TSS 

reported only in macrophages (42). The rs9349379-A allele is also associated with higher 

PHACTR1 expression in skin fibroblasts and macrophages from healthy donors (30,42). 

Publicly available datasets show that rs9349379 is an expression quantitative locus (eQTL) 

for PHACTR1 in many arterial tissues (43), and is located in the vicinity of regulatory 

sequences supported by the presence of histone acetylation marks (H3K27ac) in arterial 

tissues. These marks were absent in non arterial tissues, suggesting that the sequence where 

lays this variant may serve as an arterial specific enhancer (29), Another study demonstrated 

that the rs9349379-G allele disrupts a binding site for myocyte enhancer factor 2 (MEF2) 

transcription factors in vitro but the knockdown of MEF2A or MEF2C in human umbilical 

vein endothelial cells (HUVEC) did not affect PHACTR1 expression and the regulation of 

PHACTR1 expression by VEGF was not replicated (44), Consistent with rs9349379 residing 

in a putative enhancer, Gupta et al. recently used genome editing of pluripotent stem cells to 

show that rs9349379-G allele correlates with increased expression of endothelin-1 during 

differentiation to endothelial and smooth muscle lineages but not PHACTR1 (29). This study 
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supports the ET-1 gene (EDN1), which maps 600kbp upstream of the arterial specific 

enhancers, to be the targeted gene mediating several important biological mechanisms of 

importance for most of the vascular diseases genetically linked to rs9349379 (e.g 

vasoconstriction, proliferation and vasodilation). Consistently, here we replicated in 180 

SCAD patients the correlation described in healthy volunteers between rs9349379 genotypes 

and circulating endothelin-1 (29). The well-known hemodynamic and vascular effects of ET-1 

provide an attractive potential contributing mechanism for many of the vascular diseases 

where rs9349379 is genetically involved. However, given the size of the effect reported on 

circulating ET-1 and the lack of evidence to date of significant hemodynamic differences in 

SCAD populations, the effect on ET-1 does not appear to be sufficient alone to explain the 

large spectrum of clinical manifestations associated with this locus. In addition, ET-1 is 

mostly a paracrine signaling protein, and its plasma level may not reflect dynamic and local 

production in the vascular wall (45). ET-1 biological actions are diverse and compensatory 

through its receptors ETA and ETB, which mediate opposing vasoconstrictor and vasodilator 

effects, although human coronary arteries only express the ETA subtype (46). Further 

investigation is required to understand how a reduced ET-1 production may result in 

increased risk for SCAD, FMD and CeAD. In addition, the possible contributions and roles of 

other coding and non-coding genes at this locus, including PHACTR1, cannot be ruled out at 

his stage, especially in the complex genetic context contributing to these vascular disorders 

that includes multiple genetic and environmental triggering factors.  

 

Conclusions 

Here we report rs9349379 to be the first genetic risk locus for SCAD. The previously reported 

association between this common variant and other vascular disorders, especially with FMD, 

provides a genetic explanation for the established clinical associations between these 
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disorders. Genetically modulated circulating endothelin-1 levels may be an important 

mechanism for the biological effects of this variant but further studies will be required to 

confirm the relative importance of other mechanistic pathways and their relevance to SCAD 

and FMD risks. 

 

Clinical Perspectives 

This study’s demonstration of rs9349379 as the first risk locus identified for SCAD has 

important clinical and pathophysiological implications. First, it demonstrates that SCAD is 

likely to be genetically determined under a complex pattern of inheritance, unlike many rare 

Mendelian connective tissue disorders involving arterial fragility and dissection and 

commonly confounded in some SCAD patients (23). Second, it provides a mechanism for the 

clinical associations observed between SCAD and FMD, and also CeAD and migraine (1) all 

of which have been associated with the same risk allele (27,29,47). The finding has important 

future implications for conceiving appropriate evidence-based management and treatments for 

SCAD-AMI.  
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Central Illustration. Summary of the associations between rs9349379 and SCAD, FMD, 

which is in opposite direction with CAD/MI globally, and stratified by sex. Effect allele is the 

A allele for all diseases analyzed, which is the risk allele for SCAD and FMD.  

 

Table 1. Clinical characteristics of study populations. Continuous values are presented as 

means ± standard deviation (SD) and categories as porcentages (%). Yrs: years. NA: not 

available. NR: not relevant. 

 

Table 2. Association analyses between rs9349379 and SCAD in four case control studies. 

*: Odds Ratio (OR) and P values (P) were computed by logistic regression under the additive 

genetic model. †: Meta-analysis was performed using inverse variance-weighted method. 

Heterogeneity between cohorts was tested using Cochran’s Q statistics and was not significant 

(Chi-sq = 3.38, ddf=3, p=0.337). EAF: effect allele frequency. 

 

Figure 1. Forest plot representing the association in individual studies and the global 

genetic association between rs9349379 and SCAD under the additive model. Effect allele 

frequency (EAF) is estimated from the total sample of cases and controls for each study. OR: 

odds ratio, CI: confidence interval.  

 

Figure 2. Box plot showing circulating ET-1 levels measured in plasma by PHACTR1 

SNP rs9349379 genotypes of SCAD patients. Linear regression of ET-1 rank-based inverse-

normal transformation (i.e. standardized Z-scores) by genotype under a dominant genetic 

model (i.e. GG vs AG, AA) adjusting for age and sex, * p<0.05.  

Online Table 1. Genotyping information and Hardy-Weinberg equillibrium (HWE) test 

results for rs9349379 per cohort.  
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Online Table 2. Correlation between rs9349379 genotypes and pregnancy associated 

SCAD (P-SCAD), recurrent SCAD and age at event. NP: non pregnancy. NR : non 

recurrent. OR: odds ratio. CI: confidence interval. 

 

Online note. Full lists of authors and their affiliations from DISCO consortium and 

CARDIoGRAMPluC4D.  
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Cohorts N Females	(%)
Age	at	inclusion	±	

SD	(yrs)

Age	at	1st	Event	

±	SD	(yrs)

P-SCAD	

(%)

Recurrent	

SCAD	(%)
Study	Recruitment

French Cases 189 170 (90%) 52.05 ± 10.18 NA NA NA National Register

French Controls (PPS3) 3964 1012 (40%) 58.73 ± 5.94 NR NR NR Population-based

UK Cases 202 194 (96%) 46.87 ± 8.18 44.71 ± 8.25 18 (8.9%) 23 (11.4%) Mainland UK Nationwide

UK Controls (B58) 606 582 (96%) 44.00 ± 0.00 NR NR NR Mainland UK Nationwide

AU/Mount Sinai Cases 160 154 (96%) 50.65 ± 8.53 47.32 ± 8.85 14 (8.7%) 18 (11.2%) Social Media Platform

AU/Mount Sinai Controls 1127 672 (59.6%) >75 NR NR NR Healthy volunteers

Mayo Clinic Cases 504 482 (96%) 48.72 ± 9.56 46.07 ± 9.31 53 (11%) 81 (16.1%)
Mayo Clinic patients & physician 

referrals, social media

Mayo Clinic Controls 1493 1423 (95%) 64.35 ± 14.51 NR NR NR
Healthy volunteers (Mayo 

Genome Consortia)

Table 1. Clinical characteristics of study populations. 

Continuous values are presented as means ± standard deviation (SD) and categories as porcentages (%). P-SCAD: pregnancy SCAD. Yrs: years. NA: not 

available. NR: not relevant



Case	Control	Study GG GA AA EAF OR
*,†
	(95%CI) P

*,†

French Cases 189 12 65 112 0.76

French Controls (PPS3) 3964 574 1795 1595 0.63 1.81	(1.39-2.35) 1.03E-05

UK Cases 202 16 99 87 0.68

UK Controls (B58) 606 105 275 226 0.60 1.38	(1.09-1.75) 7.00E-03

AU/Mount Sinai Cases 160 12 70 78 0.71

AU/Mount Sinai Controls 1127 187 536 404 0.60 1.66	(1.27-2.15) 1.56E-04

Mayo Clinic Cases 504 40 199 265 0.72

Mayo Clinic Controls 1493 255 703 535 0.59 1.77	(1.51-2.07) 1.00E-12

Total	Cases 1055 80 433 542 0.72

Total	Controls 7190 1121 3309 2760 0.61 1.67	(1.50-1.86) 6.76E-21

Table 2. Association analyses between rs9349379 and SCAD in four case control studies. 

*: Odds Ratio (OR) and P values (P) were computed by logistic regression under the additive 

genetic model.† : Meta-analysis was performed using inverse variance-weighted method. 

Heterogeneity between cohorts was tested using Cochran’s Q statistics and was not significant (Chi-

sq = 3.38, ddf=3, p=0.337). EAF: effect allele frequency.
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