95 research outputs found

    A density functional theory for general hard-core lattice gases

    Full text link
    We put forward a general procedure to obtain an approximate free energy density functional for any hard-core lattice gas, regardless of the shape of the particles, the underlying lattice or the dimension of the system. The procedure is conceptually very simple and recovers effortlessly previous results for some particular systems. Also, the obtained density functionals belong to the class of fundamental measure functionals and, therefore, are always consistent through dimensional reduction. We discuss possible extensions of this method to account for attractive lattice models.Comment: 4 pages, 1 eps figure, uses RevTeX

    Cluster density functional theory for lattice models based on the theory of Mobius functions

    Full text link
    Rosenfeld's fundamental measure theory for lattice models is given a rigorous formulation in terms of the theory of Mobius functions of partially ordered sets. The free-energy density functional is expressed as an expansion in a finite set of lattice clusters. This set is endowed a partial order, so that the coefficients of the cluster expansion are connected to its Mobius function. Because of this, it is rigorously proven that a unique such expansion exists for any lattice model. The low-density analysis of the free-energy functional motivates a redefinition of the basic clusters (zero-dimensional cavities) which guarantees a correct zero-density limit of the pair and triplet direct correlation functions. This new definition extends Rosenfeld's theory to lattice model with any kind of short-range interaction (repulsive or attractive, hard or soft, one- or multi-component...). Finally, a proof is given that these functionals have a consistent dimensional reduction, i.e. the functional for dimension d' can be obtained from that for dimension d (d'<d) if the latter is evaluated at a density profile confined to a d'-dimensional subset.Comment: 21 pages, 2 figures, uses iopart.cls, as well as diagrams.sty (included

    Equilibrium susceptibilities of superparamagnets: longitudinal & transverse, quantum & classical

    Full text link
    The equilibrium susceptibility of uniaxial paramagnets is studied in a unified framework which permits to connect traditional results of the theory of quantum paramagnets, \Sm=1/2, 1, 3/2, ..., with molecular magnetic clusters, \Sm\sim5, 10, 20, all the way up, \Sm=30, 50, 100,... to the theory of classical superparamagnets. This is done using standard tools of quantum statistical mechanics and linear response theory (the Kubo correlator formalism). Several features of the temperature dependence of the susceptibility curves (crossovers, peaks, deviations from Curie law) are studied and their scalings with \Sm identified and characterized. Both the longitudinal and transverse susceptibilities are discussed, as well as the response of the ensemble with anisotropy axes oriented at random. For the latter case a simple approximate formula is derived too, and its range of validity assessed, so it could be used in modelization of experiments.Comment: 32 pages, 5 figures. Submitted to J.Phys.Condens.Matte

    A ring/disk/outflow system associated with W51 North: a very massive star in the making

    Full text link
    Sensitive and high angular resolution (\sim 0.4\arcsec) SO2_2[222,20_{2,20} \to 221,21_{1,21}] and SiO[5\to4] line and 1.3 and 7 mm continuum observations made with the Submillimeter Array (SMA) and the Very Large Array (VLA) towards the young massive cluster W51 IRS2 are presented. We report the presence of a large (of about 3000 AU) and massive (40 M_\odot) dusty circumstellar disk and a hot gas molecular ring around a high-mass protostar or a compact small stellar system associated with W51 North. The simultaneous observations of the silicon monoxide molecule, an outflow gas tracer, further revealed a massive (200 M_\odot) and collimated (14\sim14^\circ) outflow nearly perpendicular to the dusty and molecular structures suggesting thus the presence of a single very massive protostar with a bolometric luminosity of more than 105^5 L_\odot. A molecular hybrid LTE model of a Keplerian and infalling ring with an inner cavity and a central stellar mass of more than 60 M_\odot agrees well with the SO2_2[222,20_{2,20} \to 221,21_{1,21}] line observations. Finally, these results suggest that mechanisms, such as mergers of low- and intermediate- mass stars, might be not necessary for forming very massive stars.Comment: Accepted by The Astrophysical Journa

    Early detection of left ventricular diastolic dysfunction in Chagas' disease

    Get PDF
    BACKGROUND: Chagas' disease may cause left ventricular diastolic dysfunction and its early detection in asymptomatic patients would allow to stratify the risk and to optimize medical treatment. The aim of this study is to investigate if transmitral Doppler flow can detect early abnormalities of the diastolic left ventricular function in patients during the indeterminate phase of Chagas' disease, in which the electrocardiogram (ECG), chest x-ray and 2-D echocardiogram (2D-echo) are normal. METHODS: a group of 54 patients with Chagas' disease was studied and compared to a control group of 27 subjects of similar age. All were assessed with an ECG, chest X-ray, 2-D echo, and transmitral Doppler flow. RESULTS: both groups had similar values in the 2D-echo. In patients with Chagas' disease, the transmitral Doppler showed a higher peak A velocity (control group: 0.44 m/sec, Chagas group: 0.55 m/sec, p = 0.001), a lower E/A ratio (control group: 1.45, Chagas group: 1.22, p < 0.05), and a lengthening of the deceleration time of early diastolic filling (control: 138.7 ± 26.8 msec, Chagas group: 167.9 ± 34.6 msec, p = 001), thus revealing an early disorder of the diastolic left ventricular function in patients with Chagas' disease. CONCLUSION: in patients with Chagas' disease who are in the indeterminate phase, transmitral Doppler flow allowed to identify early abnormalities of the left ventricular diastolic function, which provide useful clinical information for prognostic stratification and treatment

    An Extensive, Sensitive Search for SiO Masers in High- and Intermediate-Mass Star-Forming Regions

    Full text link
    We present sensitive Very Large Array observations with an angular resolution of a few arcseconds of the J=10J= 1 - 0 line of SiO in the vv=1 and 2 vibrationally excited states toward a sample of 60 Galactic regions in which stars of high or intermediate mass are currently forming and/or have recently formed. We report the detection of SiO maser emission in \textit{both} vibrationally excited transitions toward only three very luminous regions: Orion-KL, W51N and Sgr B2(M). Toward all three, SiO maser emission had previously been reported, in Orion-KL in both lines, in W51N only in the v=2v=2 line and in Sgr B2(M) only in the v=1v=1 line. Our work confirms that SiO maser emission in star-forming regions is a rare phenomenon, indeed, that requires special, probably extreme, physical and chemical conditions not commonly found. In addition to this SiO maser survey, we also present images of the simultaneously observed 7 mm continuum emission from a subset of our sample of star-forming regions where such emission was detected. This is in most cases likely to be free-free emission from compact- and ultracompact-HII regions.Comment: Accepted by The Astronomical Journal Supplement Serie

    The ENIGMA-Epilepsy working group: Mapping disease from large data sets

    Get PDF
    Epilepsy is a common and serious neurological disorder, with many different constituent conditions characterized by their electro clinical, imaging, and genetic features. MRI has been fundamental in advancing our understanding of brain processes in the epilepsies. Smaller‐scale studies have identified many interesting imaging phenomena, with implications both for understanding pathophysiology and improving clinical care. Through the infrastructure and concepts now well‐established by the ENIGMA Consortium, ENIGMA‐Epilepsy was established to strengthen epilepsy neuroscience by greatly increasing sample sizes, leveraging ideas and methods established in other ENIGMA projects, and generating a body of collaborating scientists and clinicians to drive forward robust research. Here we review published, current, and future projects, that include structural MRI, diffusion tensor imaging (DTI), and resting state functional MRI (rsfMRI), and that employ advanced methods including structural covariance, and event‐based modeling analysis. We explore age of onset‐ and duration‐related features, as well as phenomena‐specific work focusing on particular epilepsy syndromes or phenotypes, multimodal analyses focused on understanding the biology of disease progression, and deep learning approaches. We encourage groups who may be interested in participating to make contact to further grow and develop ENIGMA‐Epilepsy

    Dengue: a continuing global threat.

    Get PDF
    Dengue fever and dengue haemorrhagic fever are important arthropod-borne viral diseases. Each year, there are ∼50 million dengue infections and ∼500,000 individuals are hospitalized with dengue haemorrhagic fever, mainly in Southeast Asia, the Pacific and the Americas. Illness is produced by any of the four dengue virus serotypes. A global strategy aimed at increasing the capacity for surveillance and outbreak response, changing behaviours and reducing the disease burden using integrated vector management in conjunction with early and accurate diagnosis has been advocated. Antiviral drugs and vaccines that are currently under development could also make an important contribution to dengue control in the future

    Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study

    Get PDF
    Progressive functional decline in the epilepsies is largely unexplained. We formed the ENIGMA-Epilepsy consortium to understand factors that influence brain measures in epilepsy, pooling data from 24 research centres in 14 countries across Europe, North and South America, Asia, and Australia. Structural brain measures were extracted from MRI brain scans across 2149 individuals with epilepsy, divided into four epilepsy subgroups including idiopathic generalized epilepsies (n =367), mesial temporal lobe epilepsies with hippocampal sclerosis (MTLE; left, n = 415; right, n = 339), and all other epilepsies in aggregate (n = 1026), and compared to 1727 matched healthy controls. We ranked brain structures in order of greatest differences between patients and controls, by meta-Analysing effect sizes across 16 subcortical and 68 cortical brain regions. We also tested effects of duration of disease, age at onset, and age-by-diagnosis interactions on structural measures. We observed widespread patterns of altered subcortical volume and reduced cortical grey matter thickness. Compared to controls, all epilepsy groups showed lower volume in the right thalamus (Cohen's d = \uc3\ua2 '0.24 to \uc3\ua2 '0.73; P < 1.49 \uc3\u97 10 \uc3\ua2 '4), and lower thickness in the precentral gyri bilaterally (d = \uc3\ua2 '0.34 to \uc3\ua2 '0.52; P < 4.31 \uc3\u97 10 \uc3\ua2 '6). Both MTLE subgroups showed profound volume reduction in the ipsilateral hippocampus (d = \uc3\ua2 '1.73 to \uc3\ua2 '1.91, P < 1.4 \uc3\u97 10 \uc3\ua2 '19), and lower thickness in extrahippocampal cortical regions, including the precentral and paracentral gyri, compared to controls (d = \uc3\ua2 '0.36 to \uc3\ua2 '0.52; P < 1.49 \uc3\u97 10 \uc3\ua2 '4). Thickness differences of the ipsilateral temporopolar, parahippocampal, entorhinal, and fusiform gyri, contralateral pars triangularis, and bilateral precuneus, superior frontal and caudal middle frontal gyri were observed in left, but not right, MTLE (d = \uc3\ua2 '0.29 to \uc3\ua2 '0.54; P < 1.49 \uc3\u97 10 \uc3\ua2 '4). Contrastingly, thickness differences of the ipsilateral pars opercularis, and contralateral transverse temporal gyrus, were observed in right, but not left, MTLE (d = \uc3\ua2 '0.27 to \uc3\ua2 '0.51; P < 1.49 \uc3\u97 10 \uc3\ua2 '4). Lower subcortical volume and cortical thickness associated with a longer duration of epilepsy in the all-epilepsies, all-other-epilepsies, and right MTLE groups (beta, b < \uc3\ua2 '0.0018; P < 1.49 \uc3\u97 10 \uc3\ua2 '4). In the largest neuroimaging study of epilepsy to date, we provide information on the common epilepsies that could not be realistically acquired in any other way. Our study provides a robust ranking of brain measures that can be further targeted for study in genetic and neuropathological studies. This worldwide initiative identifies patterns of shared grey matter reduction across epilepsy syndromes, and distinctive abnormalities between epilepsy syndromes, which inform our understanding of epilepsy as a network disorder, and indicate that certain epilepsy syndromes involve more widespread structural compromise than previously assumed

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore