916 research outputs found
Asymmetry sum rule for molecular predissociation
© 2000 American Physical SocietyIn the case of weak diatomic molecular predissociation by noninteracting, optically inactive continuum states, it is demonstrated that the predissociation line shape is more accurately represented by a Beutler-Fano profile than by a Lorentzian. The weak asymmetry that is found to occur is due principally to interactions with neighboring vibrational resonances. For this type of predissociation in the case of multiple continua, a sum rule for the corresponding line-shape asymmetry is derived. This sum rule is verified numerically using single-channel and multichannel coupled Schrödinger-equation calculations for the Schumann-Runge band system of O2. Similar results are presented for the case of optically active continua.F. T. Hawes, L. W. Torop, B. R. Lewis and S. T. Gibso
Computational advances in gravitational microlensing: a comparison of CPU, GPU, and parallel, large data codes
To assess how future progress in gravitational microlensing computation at
high optical depth will rely on both hardware and software solutions, we
compare a direct inverse ray-shooting code implemented on a graphics processing
unit (GPU) with both a widely-used hierarchical tree code on a single-core CPU,
and a recent implementation of a parallel tree code suitable for a CPU-based
cluster supercomputer. We examine the accuracy of the tree codes through
comparison with a direct code over a much wider range of parameter space than
has been feasible before. We demonstrate that all three codes present
comparable accuracy, and choice of approach depends on considerations relating
to the scale and nature of the microlensing problem under investigation. On
current hardware, there is little difference in the processing speed of the
single-core CPU tree code and the GPU direct code, however the recent plateau
in single-core CPU speeds means the existing tree code is no longer able to
take advantage of Moore's law-like increases in processing speed. Instead, we
anticipate a rapid increase in GPU capabilities in the next few years, which is
advantageous to the direct code. We suggest that progress in other areas of
astrophysical computation may benefit from a transition to GPUs through the use
of "brute force" algorithms, rather than attempting to port the current best
solution directly to a GPU language -- for certain classes of problems, the
simple implementation on GPUs may already be no worse than an optimised
single-core CPU version.Comment: 11 pages, 4 figures, accepted for publication in New Astronom
Classes of exact wavefunctions for general time-dependent Dirac Hamiltonians in 1+1 dimensions
In this work we construct two classes of exact solutions for the most general
time-dependent Dirac Hamiltonian in 1+1 dimensions. Some problems regarding to
some formal solutions in the literature are discussed. Finally the existence of
a generalized Lewis-Riesenfeld invariant connected with such solutions is
discussed
The celebrity entrepreneur on television: profile, politics and power
This article examines the rise of the ‘celebrity entrepreneur’ on television through the emergence of the ‘business entertainment format’ and considers the ways in which regular television exposure can be converted into political influence. Within television studies there has been a preoccupation in recent years with how lifestyle and reality formats work to transform ‘ordinary’ people into celebrities. As a result, the contribution of vocationally skilled business professionals to factual entertainment programming has gone almost unnoticed. This article draws on interviews with key media industry professionals and begins by looking at the construction of entrepreneurs as different types of television personalities and how discourses of work, skill and knowledge function in business shows. It then outlines how entrepreneurs can utilize their newly acquired televisual skills to cultivate a wider media profile and secure various forms of political access and influence. Integral to this is the centrality of public relations and media management agencies in shaping media discourses and developing the individual as a ‘brand identity’ that can be used to endorse a range of products or ideas. This has led to policy makers and politicians attempting to mobilize the media profile of celebrity entrepreneurs to reach out and connect with the public on business and enterprise-related issues
The High Redshift Integrated Sachs-Wolfe Effect
In this paper we rely on the quasar (QSO) catalog of the Sloan Digital Sky
Survey Data Release Six (SDSS DR6) of about one million photometrically
selected QSOs to compute the Integrated Sachs-Wolfe (ISW) effect at high
redshift, aiming at constraining the behavior of the expansion rate and thus
the behaviour of dark energy at those epochs. This unique sample significantly
extends previous catalogs to higher redshifts while retaining high efficiency
in the selection algorithm. We compute the auto-correlation function (ACF) of
QSO number density from which we extract the bias and the stellar
contamination. We then calculate the cross-correlation function (CCF) between
QSO number density and Cosmic Microwave Background (CMB) temperature
fluctuations in different subsamples: at high z>1.5 and low z<1.5 redshifts and
for two different choices of QSO in a conservative and in a more speculative
analysis. We find an overall evidence for a cross-correlation different from
zero at the 2.7\sigma level, while this evidence drops to 1.5\sigma at z>1.5.
We focus on the capabilities of the ISW to constrain the behaviour of the dark
energy component at high redshift both in the \LambdaCDM and Early Dark Energy
cosmologies, when the dark energy is substantially unconstrained by
observations. At present, the inclusion of the ISW data results in a poor
improvement compared to the obtained constraints from other cosmological
datasets. We study the capabilities of future high-redshift QSO survey and find
that the ISW signal can improve the constraints on the most important
cosmological parameters derived from Planck CMB data, including the high
redshift dark energy abundance, by a factor \sim 1.5.Comment: 20 pages, 18 figures, and 7 table
Long distance regularization in chiral perturbation theory with decuplet
We investigate the use of long distance regularization in SU(3) baryon chiral
perturbation theory with decuplet fields. The one-loop decuplet contributions
to the octet baryon masses, axial couplings, S-wave nonleptonic hyperon decays
and magnetic moments are evaluated in a chirally consistent fashion by
employing a cutoff to implement long distance regularization. The convergence
of the chiral expansions of these quantities is improved compared to the
dimensionally regularized version which indicates that the propagation of
Goldstone bosons over distances smaller than a typical hadronic size, which is
beyond the regime of chiral perturbation theory but included by dimensional
regularization, is removed by use of a cutoff.Comment: 31 page
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Use of Repeated Blood Pressure and Cholesterol Measurements to Improve Cardiovascular Disease Risk Prediction: An Individual-Participant-Data Meta-Analysis
The added value of incorporating information from repeated blood pressure and cholesterol measurements to predict cardiovascular disease (CVD) risk has not been rigorously assessed. We used data on 191,445 adults from the Emerging Risk Factors Collaboration (38 cohorts from 17 countries with data encompassing 1962-2014) with more than 1 million measurements of systolic blood pressure, total cholesterol, and high-density lipoprotein cholesterol. Over a median 12 years of follow-up, 21,170 CVD events occurred. Risk prediction models using cumulative mean values of repeated measurements and summary measures from longitudinal modeling of the repeated measurements were compared with models using measurements from a single time point. Risk discrimination (Cindex) and net reclassification were calculated, and changes in C-indices were meta-analyzed across studies. Compared with the single-time-point model, the cumulative means and longitudinal models increased the C-index by 0.0040 (95% confidence interval (CI): 0.0023, 0.0057) and 0.0023 (95% CI: 0.0005, 0.0042), respectively. Reclassification was also improved in both models; compared with the single-time-point model, overall net reclassification improvements were 0.0369 (95% CI: 0.0303, 0.0436) for the cumulative-means model and 0.0177 (95% CI: 0.0110, 0.0243) for the longitudinal model. In conclusion, incorporating repeated measurements of blood pressure and cholesterol into CVD risk prediction models slightly improves risk prediction
Measurement of the correlation between flow harmonics of different order in lead-lead collisions at √sNN = 2.76 TeV with the ATLAS detector
Correlations between the elliptic or triangular flow coefficients vm (m=2 or 3) and other flow harmonics vn (n=2 to 5) are measured using √sNN=2.76 TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 7 μb−1. The vm−vn correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v3 is found to be anticorrelated with v2 and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities, ε2 and ε3. However, it is observed that v4 increases strongly with v2, and v5 increases strongly with both v2 and v3. The trend and strength of the vm−vn correlations for n=4 and 5 are found to disagree with εm−εn correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to vn and a nonlinear term that is a function of v22 or of v2v3, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v4 and v5 are found to be consistent with previously measured event-plane correlations
- …
