388 research outputs found

    Shot Noise in Nanoscale Conductors From First Principles

    Full text link
    We describe a field-theoretic approach to calculate quantum shot noise in nanoscale conductors from first principles. Our starting point is the second-quantization field operator to calculate shot noise in terms of single quasi-particle wavefunctions obtained self-consistently within density functional theory. The approach is valid in both linear and nonlinear response and is particularly suitable in studying shot noise in atomic-scale conductors. As an example we study shot noise in Si atomic wires between metal electrodes. We find that shot noise is strongly nonlinear as a function of bias and it is enhanced for one- and two-Si wires due to the large contribution from the metal electrodes. For longer wires it shows an oscillatory behavior for even and odd number of atoms with opposite trend with respect to the conductance, indicating that current fluctuations persist with increasing wire length.Comment: 4 pages, 4 figure

    Mass Renormalization in the Su-Schrieffer-Heeger Model

    Full text link
    This study of the one dimensional Su-Schrieffer-Heeger model in a weak coupling perturbative regime points out the effective mass behavior as a function of the adiabatic parameter ωπ/J\omega_{\pi}/J, ωπ\omega_{\pi} is the zone boundary phonon energy and JJ is the electron band hopping integral. Computation of low order diagrams shows that two phonons scattering processes become appreciable in the intermediate regime in which zone boundary phonons energetically compete with band electrons. Consistently, in the intermediate (and also moderately antiadiabatic) range the relevant mass renormalization signals the onset of a polaronic crossover whereas the electrons are essentially undressed in the fully adiabatic and antiadiabatic systems. The effective mass is roughly twice as much the bare band value in the intermediate regime while an abrupt increase (mainly related to the peculiar 1D dispersion relations) is obtained at ωπ∌2J\omega_{\pi}\sim \sqrt{2}J.Comment: To be published in Phys.Rev.B - 3 figure

    Numerical study of chiral symmetry breaking in non-Abelian gauge theory with background magnetic field

    Full text link
    We investigate the effect of a uniform background magnetic field on the chiral symmetry breaking in SU(2) Yang-Mills theory on the lattice. We observe that the chiral condensate grows linearly with the field strength B up to \sqrt{e B} = 3 GeV as predicted by chiral perturbation theory for full QCD. As the temperature increases the coefficient in front of the linear term gets smaller. In the magnetic field near-zero eigenmodes of the Dirac operator tend to have more regular structure with larger (compared to zero-field case) Hausdorff dimensionality. We suggest that the delocalization of near-zero eigenmodes plays a crucial role in the enhancement of the chiral symmetry breaking.Comment: 6 pages, Elsevier article style, 5 figures; revision: references and discussions added, published versio

    The Holstein Polaron

    Full text link
    We describe a variational method to solve the Holstein model for an electron coupled to dynamical, quantum phonons on an infinite lattice. The variational space can be systematically expanded to achieve high accuracy with modest computational resources (12-digit accuracy for the 1d polaron energy at intermediate coupling). We compute ground and low-lying excited state properties of the model at continuous values of the wavevector kk in essentially all parameter regimes. Our results for the polaron energy band, effective mass and correlation functions compare favorably with those of other numerical techniques including DMRG, Global Local and exact diagonalization. We find a phase transition for the first excited state between a bound and unbound system of a polaron and an additional phonon excitation. The phase transition is also treated in strong coupling perturbation theory.Comment: 24 pages, 11 figures submitted to PR

    Lattice dynamics effects on small polaron properties

    Full text link
    This study details the conditions under which strong-coupling perturbation theory can be applied to the molecular crystal model, a fundamental theoretical tool for analysis of the polaron properties. I show that lattice dimensionality and intermolecular forces play a key role in imposing constraints on the applicability of the perturbative approach. The polaron effective mass has been computed in different regimes ranging from the fully antiadiabatic to the fully adiabatic. The polaron masses become essentially dimension independent for sufficiently strong intermolecular coupling strengths and converge to much lower values than those tradition-ally obtained in small-polaron theory. I find evidence for a self-trapping transition in a moderately adiabatic regime at an electron-phonon coupling value of .3. Our results point to a substantial independence of the self-trapping event on dimensionality.Comment: 8 pages, 5 figure

    Shortening the length of stay and mechanical ventilation time by using positive suggestions via MP3 players for ventilated patients

    Get PDF
    Long stay in intensive care unit (ICU) and prolonged ventilation are deleterious for subsequent quality of life and surcharge financial capacity. We have already demonstrated the beneficial effects of using suggestive communication on recovery time during intensive care. The aim of our present study was to prove the same effects with standardized positive suggestive message delivered by an MP3 player. Patients ventilated in ICU were randomized into a control group receiving standard ICU treatment and two groups with a standardized pre-recorded material delivered via headphones: a suggestive message about safety, self-control, and recovery for the study group and a relaxing music for the music group. Groups were similar in terms of age, gender, and mortality, but the SAPS II scores were higher in the study group than that in the controls (57.8 ± 23.6 vs. 30.1 ± 15.5 and 33.7 ± 17.4). Our post-hoc analysis results showed that the length of ICU stay (134.2 ± 73.3 vs. 314.2 ± 178.4 h) and the time spent on ventilator (85.2 ± 34.9 vs. 232.0 ± 165.6 h) were significantly shorter in the study group compared to the unified control. The advantage of the structured positive suggestive message was proven against both music and control groups

    Deconfining Phase Transition as a Matrix Model of Renormalized Polyakov Loops

    Full text link
    We discuss how to extract renormalized from bare Polyakov loops in SU(N) lattice gauge theories at nonzero temperature in four spacetime dimensions. Single loops in an irreducible representation are multiplicatively renormalized without mixing, through a renormalization constant which depends upon both representation and temperature. The values of renormalized loops in the four lowest representations of SU(3) were measured numerically on small, coarse lattices. We find that in magnitude, condensates for the sextet and octet loops are approximately the square of the triplet loop. This agrees with a large NN expansion, where factorization implies that the expectation values of loops in adjoint and higher representations are just powers of fundamental and anti-fundamental loops. For three colors, numerically the corrections to the large NN relations are greatest for the sextet loop, ≀25\leq 25%; these represent corrections of ∌1/N\sim 1/N for N=3. The values of the renormalized triplet loop can be described by an SU(3) matrix model, with an effective action dominated by the triplet loop. In several ways, the deconfining phase transition for N=3 appears to be like that in the N=∞N=\infty matrix model of Gross and Witten.Comment: 24 pages, 7 figures; v2, 27 pages, 12 figures, extended discussion for clarity, results unchange

    Pulsar-wind nebulae and magnetar outflows: observations at radio, X-ray, and gamma-ray wavelengths

    Get PDF
    We review observations of several classes of neutron-star-powered outflows: pulsar-wind nebulae (PWNe) inside shell supernova remnants (SNRs), PWNe interacting directly with interstellar medium (ISM), and magnetar-powered outflows. We describe radio, X-ray, and gamma-ray observations of PWNe, focusing first on integrated spectral-energy distributions (SEDs) and global spectral properties. High-resolution X-ray imaging of PWNe shows a bewildering array of morphologies, with jets, trails, and other structures. Several of the 23 so far identified magnetars show evidence for continuous or sporadic emission of material, sometimes associated with giant flares, and a few possible "magnetar-wind nebulae" have been recently identified.Comment: 61 pages, 44 figures (reduced in quality for size reasons). Published in Space Science Reviews, "Jets and Winds in Pulsar Wind Nebulae, Gamma-ray Bursts and Blazars: Physics of Extreme Energy Release

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
    • 

    corecore