1,262 research outputs found

    Genome-wide compendium and functional assessment of in vivo heart enhancers

    Get PDF
    Whole-genome sequencing is identifying growing numbers of non-coding variants in human disease studies, but the lack of accurate functional annotations prevents their interpretation. We describe the genome-wide landscape of distant-acting enhancers active in the developing and adult human heart, an organ whose impairment is a predominant cause of mortality and morbidity. Using integrative analysis of >35 epigenomic data sets from mouse and human pre- and postnatal hearts we created a comprehensive reference of >80,000 putative human heart enhancers. To illustrate the importance of enhancers in the regulation of genes involved in heart disease, we deleted the mouse orthologs of two human enhancers near cardiac myosin genes. In both cases, we observe in vivo expression changes and cardiac phenotypes consistent with human heart disease. Our study provides a comprehensive catalogue of human heart enhancers for use in clinical whole-genome sequencing studies and highlights the importance of enhancers for cardiac function

    Variation in helper effort among cooperatively breeding bird species is consistent with Hamilton's Rule.

    Get PDF
    Investment by helpers in cooperative breeding systems is extremely variable among species, but this variation is currently unexplained. Inclusive fitness theory predicts that, all else being equal, cooperative investment should correlate positively with the relatedness of helpers to the recipients of their care. We test this prediction in a comparative analysis of helper investment in 36 cooperatively breeding bird species. We show that species-specific helper contributions to cooperative brood care increase as the mean relatedness between helpers and recipients increases. Helper contributions are also related to the sex ratio of helpers, but neither group size nor the proportion of nests with helpers influence helper effort. Our findings support the hypothesis that variation in helping behaviour among cooperatively breeding birds is consistent with Hamilton's rule, indicating a key role for kin selection in the evolution of cooperative investment in social birds

    Recombinant Trimeric HA Protein Immunogenicity of H5N1 Avian Influenza Viruses and Their Combined Use with Inactivated or Adenovirus Vaccines

    Get PDF
    [[abstract]]Background:The highly pathogenic avian influenza (HPAI) H5N1 virus continues to cause disease in poultry and humans. The hemagglutinin (HA) envelope protein is the primary target for subunit vaccine development.Methodology/Principal Findings:We used baculovirus-insect cell expression to obtain trimeric recombinant HA (rHA) proteins from two HPAI H5N1 viruses. We investigated trimeric rHA protein immunogenicity in mice via immunizations, and found that the highest levels of neutralizing antibodies resulted from coupling with a PELC/CpG adjuvant. We also found that the combined use of trimeric rHA proteins with (a) an inactivated H5N1 vaccine virus, or (b) a recombinant adenovirus encoding full-length HA sequences for prime-boost immunization, further improved antibody responses against homologous and heterologous H5N1 virus strains. Data from cross-clade prime-boost immunization regimens indicate that sequential immunization with different clade HA antigens increased antibody responses in terms of total IgG level and neutralizing antibody titers.Conclusion/Significance:Our findings suggest that the use of trimeric rHA in prime-boost vaccine regimens represents an alternative strategy for recombinant H5N1 vaccine development

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    The PARAChute project: remote monitoring of posture and gait for fall prevention

    Get PDF
    Falls in the elderly are a major public health problem due to both their frequency and their medical and social consequences. In France alone, more than two million people aged over 65 years old fall each year, leading to more than 9 000 deaths, in particular in those over 75 years old (more than 8 000 deaths). This paper describes the PARAChute project, which aims to develop a methodology that will enable the detection of an increased risk of falling in community-dwelling elderly. The methods used for a remote noninvasive assessment for static and dynamic balance assessments and gait analysis are described. The final result of the project has been the development of an algorithm for movement detection during gait and a balance signature extracted from a force plate. A multicentre longitudinal evaluation of balance has commenced in order to validate the methodologies and technologies developed in the project

    Relationship between Reproductive Allocation and Relative Abundance among 32 Species of a Tibetan Alpine Meadow: Effects of Fertilization and Grazing

    Get PDF
    Background: Understanding the relationship between species traits and species abundance is an important goal in ecology and biodiversity science. Although theoretical studies predict that traits related to performance (e.g. reproductive allocation) are most directly linked to species abundance within a community, empirical investigations have rarely been done. It also remains unclear how environmental factors such as grazing or fertilizer application affect the predicted relationship. Methodology: We conducted a 3-year field experiment in a Tibetan alpine meadow to assess the relationship between plant reproductive allocation (RA) and species relative abundance (SRA) on control, grazed and fertilized plots. Overall, the studied plant community contained 32 common species. Principal Findings: At the treatment level, (i) RA was negatively correlated with SRA on control plots and during the first year on fertilized plots. (ii) No negative RA–SRA correlations were observed on grazed plots and during the second and third year on fertilized plots. (iii) Seed size was positively correlated with SRA on control plots. At the plot level, the correlation between SRA and RA were not affected by treatment, year or species composition. Conclusions/Significance: Our study shows that the performance-related trait RA can negatively affect SRA within communities, which is possibly due to the tradeoffs between clonal growth (for space occupancy) and sexual reproduction. We propose that if different species occupy different positions along these tradeoffs it will contribute to biodiversity maintenance in local communities or even at lager scale

    Transient Reversal of Episome Silencing Precedes VP16-Dependent Transcription during Reactivation of Latent HSV-1 in Neurons

    Get PDF
    Herpes simplex virus type-1 (HSV-1) establishes latency in peripheral neurons, creating a permanent source of recurrent infections. The latent genome is assembled into chromatin and lytic cycle genes are silenced. Processes that orchestrate reentry into productive replication (reactivation) remain poorly understood. We have used latently infected cultures of primary superior cervical ganglion (SCG) sympathetic neurons to profile viral gene expression following a defined reactivation stimulus. Lytic genes are transcribed in two distinct phases, differing in their reliance on protein synthesis, viral DNA replication and the essential initiator protein VP16. The first phase does not require viral proteins and has the appearance of a transient, widespread de-repression of the previously silent lytic genes. This allows synthesis of viral regulatory proteins including VP16, which accumulate in the cytoplasm of the host neuron. During the second phase, VP16 and its cellular cofactor HCF-1, which is also predominantly cytoplasmic, concentrate in the nucleus where they assemble an activator complex on viral promoters. The transactivation function supplied by VP16 promotes increased viral lytic gene transcription leading to the onset of genome amplification and the production of infectious viral particles. Thus regulated localization of de novo synthesized VP16 is likely to be a critical determinant of HSV-1 reactivation in sympathetic neurons
    corecore