521 research outputs found

    DNA Topoisomerase 1α Promotes Transcriptional Silencing of Transposable Elements through DNA Methylation and Histone Lysine 9 Dimethylation in Arabidopsis

    Get PDF
    RNA-directed DNA methylation (RdDM) and histone H3K9 dimethylation (H3K9me2) are related transcriptional silencing mechanisms that target transposable elements (TEs) and repeats to maintain genome stability in plants. RdDM is mediated by small and long noncoding RNAs produced by the plant-specific RNA polymerases Pol IV and Pol V, respectively. Through a chemical genetics screen with a luciferase-based DNA methylation reporter, LUCL, we found that camptothecin, a compound with anti- cancer properties that targets DNA topoisomerase 1α (TOP1α) was able to de-repress LUCL by reducing its DNA methylation and H3K9me2 levels. Further studies with Arabidopsis top1α mutants showed that TOP1α silences endogenous RdDM loci by facilitating the production of Pol V-dependent long non-coding RNAs, AGONAUTE4 recruitment and H3K9me2 deposition at TEs and repeats. This study assigned a new role in epigenetic silencing to an enzyme that affects DNA topology.Fil: Dinh, Thanh Theresa. University of California Riverside. Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plant Sciences; Estados Unidos. University of California Riverside. Center for Plant Cell Biology, Institute of Integrative Genome Biology. ChemGen IGERT program; Estados UnidosFil: Gao, Lei. University of California Riverside. Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plant Sciences; Estados UnidosFil: Liu, Xigang . University of California Riverside. Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plant Sciences; Estados UnidosFil: Li, Dongming. University of California Riverside. Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plant Sciences; Estados Unidos. Lanzhou University. School of Life Sciences Plant Biology Laboratory; ChinaFil: Li, Shengben. University of California Riverside. Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plant Sciences; Estados UnidosFil: Zhao, Yuanyuan. University of California Riverside. Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plant Sciences; Estados UnidosFil: O'leary, Michael. University of California Riverside. Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plant Sciences; Estados UnidosFil: Le, Brandon. University of California Riverside. Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plant Sciences; Estados UnidosFil: Schmitz, Robert J.. The Salk Institute for Biological Studies. Plant Biology Laboratory; Estados UnidosFil: Manavella, Pablo Andrés. Max Planck Institute for Developmental Biology. Department of Molecular Biology; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Agrobiotecnologia del Litoral; ArgentinaFil: Li, Shaofang. University of California Riverside. Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plant Sciences; Estados UnidosFil: Weigel, Detlef. Max Planck Institute for Developmental Biology. Department of Molecular Biology; AlemaniaFil: Pontes, Olga. University of New Mexico. Department of Biology; Estados UnidosFil: Ecker, Joseph R.. The Salk Institute for Biological Studies. Howard Hughes Medical Institute; Estados Unidos. The Salk Institute for Biological Studies. Plant Biology Laboratory; Estados UnidosFil: Chen, Xuemei. University of California Riverside. Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plant Sciences; Estados Unidos. University of California Riverside. Howard Hughes Medical Institute, ; Estados Unido

    Heart rate variability and target organ damage in hypertensive patients

    Get PDF
    Background: We evaluated the association between linear standard Heart Rate Variability (HRV) measures and vascular, renal and cardiac target organ damage (TOD). Methods: A retrospective analysis was performed including 200 patients registered in the Regione Campania network (aged 62.4 ± 12, male 64%). HRV analysis was performed by 24-h holter ECG. Renal damage was assessed by estimated glomerular filtration rate (eGFR), vascular damage by carotid intima-media thickness (IMT), and cardiac damage by left ventricular mass index. Results: Significantly lower values of the ratio of low to high frequency power (LF/HF) were found in the patients with moderate or severe eGFR (p-value < 0.001). Similarly, depressed values of indexes of the overall autonomic modulation on heart were found in patients with plaque compared to those with a normal IMT (p-value <0.05). These associations remained significant after adjustment for other factors known to contribute to the development of target organ damage, such as age. Moreover, depressed LF/HF was found also in patients with left ventricular hypertrophy but this association was not significant after adjustment for other factors. Conclusions: Depressed HRV appeared to be associated with vascular and renal TOD, suggesting the involvement of autonomic imbalance in the TOD. However, as the mechanisms by which abnormal autonomic balance may lead to TOD, and, particularly, to renal organ damage are not clearly known, further prospective studies with longitudinal design are needed to determine the association between HRV and the development of TOD

    Prevalence of macrovascular disease amongst type 2 diabetic patients detected by targeted screening and patients newly diagnosed in general practice: the Hoorn Screening Study

    Get PDF
    Prevalence of macrovascular disease amongst type 2 diabetic patients detected by targeted screening and patients newly diagnosed in general practice: the Hoorn Screening Study. Spijkerman AM, Henry RM, Dekker JM, Nijpels G, Kostense PJ, Kors JA, Ruwaard D, Stehouwer CD, Bouter LM, Heine RJ. Institutes for Research in Extramural Medicine, VU University Medical Center, Amsterdam, The Netherlands. [email protected] OBJECTIVES: Screening for type 2 diabetes has been recommended and targeted screening might be an efficient way to screen. The aim was to investigate whether diabetic patients identified by a targeted screening procedure differ from newly diagnosed diabetic patients in general practice with regard to the prevalence of macrovascular complications. DESIGN: Cross-sectional population-based study. SETTING: Population study, primary care. SUBJECTS: Diabetic patients identified by a population-based targeted screening procedure (SDM patients), consisting of a screening questionnaire and a fasting capillary glucose measurement followed by diagnostic testing, were compared with newly diagnosed diabetic patients in general practice (GPDM patients). Ischaemic heart disease and prior myocardial infarction were assessed by ECG recording. Peripheral arterial disease was assessed by the ankle-arm index. Intima-media thickness of the right common carotid artery was measured with ultrasound. RESULTS: A total of 195 SDM patients and 60 GPDM patients participated in the medical examination. The prevalence of MI was 13.3% (95% CI 9.3-18.8%) and 3.4% (1.0-11.7%) in SDM patients and GPDM patients respectively. The prevalence of ischaemic heart disease was 39.5% (95% CI 32.9-46.5%) in SDM patients and 24.1% (15.0-36.5%) in GPDM patients. The prevalence of peripheral arterial disease was similar in both groups: 10.6% (95% CI 6.9-15.9%) and 10.2% (4.7-20.5%) respectively. Mean intima-media thickness was 0.85 mm (+/-0.17) in SDM patients and 0.90 mm (+/-0.20) in GPDM patients. The difference in intima-media thickness was not statistically significant. CONCLUSIONS: Targeted screening identified patients with a prevalence of macrovascular complications similar to that of patients detected in general practice, but with a lower degree of hyperglycaemi

    Nitrogen dynamic in Eurasian coastal Arctic ecosystem: Insight from nitrogen isotope

    Get PDF
    Primary productivity is limited by the availability of nitrogen (N) in most of the coastal Arctic, as a large portion of N is released by the spring freshet and completely consumed during the following summer. Thus, understanding the fate of riverine nitrogen is critical to identify the link between dissolved nitrogen dynamic and coastal primary productivity to foresee upcoming changes in the Arctic seas, such as increase riverine discharge and permafrost thaw. Here, we provide a field-based study of nitrogen dynamic over the Laptev Sea shelf based on isotope geochemistry. We demonstrate that while most of the nitrate found under the surface fresh water layer is of remineralized origin, some of the nitrate originates from atmospheric input and was probably transported at depth by the mixing of brine-enriched denser water during sea-ice formation. Moreover, our results suggest that riverine dissolved organic nitrogen (DON) represents up to 6 times the total riverine release of nitrate and that about 62 to 76% of the DON is removed within the shelf waters. This is a crucial information regarding the near-future impact of climate change on primary productivity in the Eurasian coastal Arctic

    Coralline algae (Rhodophyta) in a changing world: integrating ecological, physiological, and geochemical responses to global change

    Get PDF
    Coralline algae are globally distributed benthic primary producers that secrete calcium carbonate skeletons. In the context of ocean acidification, they have received much recent attention due to the potential vulnerability of their high-Mg calcite skeletons and their many important ecological roles. Herein, we summarize what is known about coralline algal ecology and physiology, providing context to understand their responses to global climate change. We review the impacts of these changes, including ocean acidification, rising temperatures, and pollution, on coralline algal growth and calcification. We also assess the ongoing use of coralline algae as marine climate proxies via calibration of skeletal morphology and geochemistry to environmental conditions. Finally, we indicate critical gaps in our understanding of coralline algal calcification and physiology and highlight key areas for future research. These include analytical areas that recently have become more accessible, such as resolving phylogenetic relationships at all taxonomic ranks, elucidating the genes regulating algal photosynthesis and calcification, and calibrating skeletal geochemical metrics, as well as research directions that are broadly applicable to global change ecology, such as the importance of community-scale and long-term experiments in stress response

    Genotype at the P554L Variant of the Hexose-6 Phosphate Dehydrogenase Gene Is Associated with Carotid Intima-Medial Thickness

    Get PDF
    Objective: The combined thickness of the intima and media of the carotid artery (carotid intima-medial thickness, CIMT) is associated with cardiovascular disease and stroke. Previous studies indicate that carotid intima-medial thickness is a significantly heritable phenotype, but the responsible genes are largely unknown. Hexose-6 phosphate dehydrogenase (H6PDH) is a microsomal enzyme whose activity regulates corticosteroid metabolism in the liver and adipose tissue; variability in measures of corticosteroid metabolism within the normal range have been associated with risk factors for cardiovascular disease. We performed a genetic association study in 854 members of 224 families to assess the relationship between polymorphisms in the gene coding for hexose-6 phosphate dehydrogenase (H6PD) and carotid intima-medial thickness. Methods: Families were ascertained via a hypertensive proband. CIMT was measured using B-mode ultrasound. Single nucleotide polymorphisms (SNPs) tagging common variation in the H6PD gene were genotyped. Association was assessed following adjustment for significant covariates including "classical" cardiovascular risk factors. Functional studies to determine the effect of particular SNPs on H6PDH were performed. Results: There was evidence of association between the single nucleotide polymorphism rs17368528 in exon five of the H6PD gene, which encodes an amino-acid change from proline to leucine in the H6PDH protein, and mean carotid intima-medial thickness (p = 0.00065). Genotype was associated with a 5% (or 0.04 mm) higher mean carotid intima-medial thickness measurement per allele, and determined 2% of the population variability in the phenotype. Conclusions: Our results suggest a novel role for the H6PD gene in atherosclerosis susceptibility

    Acclimatization of the crustose coralline alga Porolithon onkodes to variable pCO2

    Get PDF
    Ocean acidification (OA) has important implications for the persistence of coral reef ecosystems, due to potentially negative effects on biomineralization. Many coral reefs are dynamic with respect to carbonate chemistry, and experience fluctuations in pCO2 that exceed OA projections for the near future. To understand the influence of dynamic pCO2 on an important reef calcifier, we tested the response of the crustose coralline alga Porolithon onkodes to oscillating pCO2. Individuals were exposed to ambient (400 ??atm), high (660 ??atm), or variable pCO2 (oscillating between 400/660 ??atm) treatments for 14 days. To explore the potential for coralline acclimatization, we collected individuals from low and high pCO2 variability sites (upstream and downstream respectively) on a back reef characterized by unidirectional water flow in Moorea, French Polynesia. We quantified the effects of treatment on algal calcification by measuring the change in buoyant weight, and on algal metabolism by conducting sealed incubations to measure rates of photosynthesis and respiration. Net photosynthesis was higher in the ambient treatment than the variable treatment, regardless of habitat origin, and there was no effect on respiration or gross photosynthesis. Exposure to high pCO2 decreased P. onkodes calcification by >70%, regardless of the original habitat. In the variable treatment, corallines from the high variability habitat calcified 42% more than corallines from the low variability habitat. The significance of the original habitat for the coralline calcification response to variable, high pCO2 indicates that individuals existing in dynamic pCO2 habitats may be acclimatized to OA within the scope of in situ variability. These results highlight the importance of accounting for natural pCO2 variability in OA manipulations, and provide insight into the potential for plasticity in habitat and species-specific responses to changing ocean chemistry.Funding was provided by grants from the National Science Foundation (OCE-0417412, OCE-10-26852, OCE-1041270) and gifts from the Gordon and Betty Moore Foundation. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Food access and diet quality are associated with quality of life outcomes among HIV-infected individuals in Uganda.

    Get PDF
    BACKGROUND: Food insecurity is associated with poor nutritional and clinical outcomes among people living with HIV/AIDS. Few studies investigate the link between food insecurity, dietary diversity and health-related quality of life among people living with HIV/AIDS. OBJECTIVE: We investigated whether household food access and individual dietary diversity are associated with health-related quality of life among people living with HIV/AIDS in Uganda. METHODS: We surveyed 902 people living with HIV/AIDS and their households from two clinics in Northern Uganda. Health-related quality of life outcomes were assessed using the Medical Outcomes Study (MOS)-HIV Survey. We performed multivariate regressions to investigate the relationship between health-related quality of life, household food insecurity and individual dietary diversity. RESULTS: People living with HIV/AIDS from severe food insecurity households have mean mental health status scores that are 1.7 points lower (p<.001) and physical health status scores that are 1.5 points lower (p<.01). Individuals with high dietary diversity have mean mental health status scores that were 3.6 points higher (p<.001) and physical health status scores that were 2.8 points higher (p<.05). CONCLUSIONS: Food access and diet quality are associated with health-related quality of life and may be considered as part of comprehensive interventions designed to mitigate psychosocial consequences of HIV

    Elucidating the native sources of an invasive tree species, Acacia pycnantha, reveals unexpected native range diversity and structure

    Get PDF
    † Background and Aims Understanding the introduction history of invasive plant species is important for their management and identifying effective host-specific biological control agents. However, uncertain taxonomy, intra- and interspecific hybridization, and cryptic speciation may obscure introduction histories, making it difficult to identify native regions to explore for host-specific agents. The overall aim of this study was to identify the native source populations of Acacia pycnantha, a tree native to south-eastern Australia and invasive in South Africa, Western Australia and Portugal. Using a phylogeographical approach also allowed an exploration of the historical processes that have shaped the genetic structure of A. pycnantha in its native range. † Methods Nuclear (nDNA) and plastid DNA sequence data were used in network and tree-building analyses to reconstruct phylogeographical relationships between native and invasive A. pycnantha populations. In addition, mismatch distributions, relative rates and Bayesian analyses were used to infer recent demographic processes and timing of events in Australia that led to population structure and diversification. † Key Results The plastid network indicated that Australian populations of A. pycnantha are geographically structured into two informally recognized lineages, the wetland and dryland forms, whereas the nuclear phylogeny showed little geographical structure between these two forms. Moreover, the dryland form of A. pycnantha showed close genetic similarity to the wetland form based on nDNA sequence data. Hybrid zones may explain these findings, supported here by incongruent phylogenetic placement of some of these taxa between nuclear and plastid genealogies. †Conclusions It is hypothesized that habitat fragmentation due to cycles of aridity inter-dispersed with periods of abundant rainfall during the Pleistocene (approx. 100 kya) probably gave rise to native dryland and wetland forms of A. pycnantha. Although the different lineages were confined to different ecological regions, we also found evidence for intraspecific hybridization in Victoria. The invasive populations in Portugal and South Africa represent wetland forms, whereas some South African populations resemble the Victorian dryland form. The success of the biological control programme for A. pycnantha in South Africa may therefore be attributed to the fact that the gall-forming wasp Trichilogaster signiventris was sourced from South Australian populations, which closely match most of the invasive populations in South Africa
    corecore