24 research outputs found

    On the abundance of non-cometary HCN on Jupiter

    Full text link
    Using one-dimensional thermochemical/photochemical kinetics and transport models, we examine the chemistry of nitrogen-bearing species in the Jovian troposphere in an attempt to explain the low observational upper limit for HCN. We track the dominant mechanisms for interconversion of N2-NH3 and HCN-NH3 in the deep, hightemperature troposphere and predict the rate-limiting step for the quenching of HCN at cooler tropospheric altitudes. Consistent with other investigations that were based solely on time-scale arguments, our models suggest that transport-induced quenching of thermochemically derived HCN leads to very small predicted mole fractions of hydrogen cyanide in Jupiter's upper troposphere. By the same token, photochemical production of HCN is ineffective in Jupiter's troposphere: CH4-NH3 coupling is inhibited by the physical separation of the CH4 photolysis region in the upper stratosphere from the NH3 photolysis and condensation region in the troposphere, and C2H2-NH3 coupling is inhibited by the low tropospheric abundance of C2H2. The upper limits from infrared and submillimeter observations can be used to place constraints on the production of HCN and other species from lightning and thundershock sources.Comment: 56 pages, 0 tables, 6 figures. Submitted to Faraday Discussions [in press

    Atmospheric retrieval of exoplanets

    Get PDF
    Exoplanetary atmospheric retrieval refers to the inference of atmospheric properties of an exoplanet given an observed spectrum. The atmospheric properties include the chemical compositions, temperature profiles, clouds/hazes, and energy circulation. These properties, in turn, can provide key insights into the atmospheric physicochemical processes of exoplanets as well as their formation mechanisms. Major advancements in atmospheric retrieval have been made in the last decade, thanks to a combination of state-of-the-art spectroscopic observations and advanced atmospheric modeling and statistical inference methods. These developments have already resulted in key constraints on the atmospheric H2O abundances, temperature profiles, and other properties for several exoplanets. Upcoming facilities such as the JWST will further advance this area. The present chapter is a pedagogical review of this exciting frontier of exoplanetary science. The principles of atmospheric retrievals of exoplanets are discussed in detail, including parametric models and statistical inference methods, along with a review of key results in the field. Some of the main challenges in retrievals with current observations are discussed along with new directions and the future landscape

    Titan's cold case files - Outstanding questions after Cassini-Huygens

    Get PDF
    Abstract The entry of the Cassini-Huygens spacecraft into orbit around Saturn in July 2004 marked the start of a golden era in the exploration of Titan, Saturn's giant moon. During the Prime Mission (2004–2008), ground-breaking discoveries were made by the Cassini orbiter including the equatorial dune fields (flyby T3, 2005), northern lakes and seas (T16, 2006), and the large positive and negative ions (T16 & T18, 2006), to name a few. In 2005 the Huygens probe descended through Titan's atmosphere, taking the first close-up pictures of the surface, including large networks of dendritic channels leading to a dried-up seabed, and also obtaining detailed profiles of temperature and gas composition during the atmospheric descent. The discoveries continued through the Equinox Mission (2008–2010) and Solstice Mission (2010–2017) totaling 127 targeted flybys of Titan in all. Now at the end of the mission, we are able to look back on the high-level scientific questions from the start of the mission, and assess the progress that has been made towards answering these. At the same time, new scientific questions regarding Titan have emerged from the discoveries that have been made. In this paper we review a cross-section of important scientific questions that remain partially or completely unanswered, ranging from Titan's deep interior to the exosphere. Our intention is to help formulate the science goals for the next generation of planetary missions to Titan, and to stimulate new experimental, observational and theoretical investigations in the interim

    AVIATR—Aerial Vehicle for In-situ and Airborne Titan Reconnaissance

    Get PDF

    Near-IR methane absorption in outer planet atmospheres: Improved models of temperature dependence and implications for Uranus cloud structure

    No full text
    Near-IR absorption of methane in the 2000-9500 cm-1 spectral region plays a major role in outer planet atmospheres. However, the theoretical basis for modeling the observations of reflectivity and emission in these regions has had serious uncertainties at temperatures needed for interpreting observations of the colder outer planets. A lack of line parameter information, including ground-state energies and the absence of weak lines, limit the applicability of line-by-line calculations at low temperatures and for long path lengths, requiring the use of band models. However, prior band models have parameterized the temperature dependence in a way that cannot be accurately extrapolated to low temperatures. Here we use simulations to show how a new parameterization of temperature dependence can greatly improve band model accuracy and allow extension of band models to the much lower temperatures that are needed to interpret observations of Uranus, Neptune, Titan, and Saturn. Use of this new parameterization by Irwin et al. [Irwin, P.G.J., Sromovsky, L.A., Strong, E.K., Sihra, K., Bowles, N., Calcutt, S.B., 2005b. Icarus. In press] has verified improved fits to laboratory observations of Strong et al. [Strong, K., Taylor, F.W., Calcutt, S.B., Remedios, J.J., Ballard, J., 1993. J. Quant. Spectrosc. Radiat. Trans. 50, 363-429] and Sihra [1998. Ph.D. Thesis, Univ. of Oxford], which cover the temperature range from 100 to 340 K. Here we compare model predictions to 77 K laboratory observations and to Uranus spectra, which show much improved agreement between observed and modeled spectral features, allowing tighter constraints on pressure levels of Uranus cloud particles, implying that most scattering contributions arise from pressures near 2 bars and 6 bars rather than expected pressures near 1.25 and 3.1 bars. Between visible and near-IR wavelengths, both cloud layers exhibit strong decreases in reflectivity that are indicative of low opacity and submicron particle sizes. © 2006 Elsevier Inc. All rights reserved

    Improved near-infrared methane band models and k-distribution parameters from 2000 to 9500 cm(-1) and implications for interpretation of outer planet spectra

    No full text
    The band model fits of Sihra [1998. Ph.D. Thesis. University of Oxford], subsequently reported by Irwin et al. [2005. Icarus 176, 255-271], to new measurements of low-temperature near-infrared self-broadened methane absorption spectra combined with earlier warmer, longer path measurements of both self- and hydrogen-broadened methane spectra measured by Strong et al. [1993. J. Quant. Spectrosc. Radiat. Transfer 50, 363-429], have been found to contain severe artefacts at wavelengths of very low methane absorption. Although spectra calculated from these new band data appear to be reliable for paths with low to medium absorption, transmissions calculated for long paths of high methane absorption, such as for Uranus, Neptune and Titan are severely compromised. The recorded laboratory transmission spectra of Sihra [1998. Ph.D. Thesis. University of Oxford] and Strong et al. [1993. J. Quant. Spectrosc. Radiat. Transfer 50, 363-429] have thus been refitted with a more robust model and new k-distribution data for both self- and hydrogen-broadened methane absorption derived. In addition, a new model of the temperature dependence of the absorption has been employed that improves the quality of the fit and should also provide more accurate extrapolations to low temperatures. © 2005 Elsevier Inc. All rights reserved

    Detection of hydrogen sulfide above the clouds in Uranus’s atmosphere

    Get PDF
    Visible-to-near-infrared observations indicate that the cloud top of the main cloud deck on Uranus lies at a pressure level of between 1.2 bar and 3 bar. However, its composition has never been unambiguously identified, although it is widely assumed to be composed primarily of either ammonia or hydrogen sulfide (H2S) ice. Here, we present evidence of a clear detection of gaseous H2S above this cloud deck in the wavelength region 1.57–1.59 Όm with a mole fraction of 0.4–0.8 ppm at the cloud top. Its detection constrains the deep bulk sulfur/nitrogen abundance to exceed unity (>4.4–5.0 times the solar value) in Uranus’s bulk atmosphere, and places a lower limit on the mole fraction of H2S below the observed cloud of ( 1.0 - 2.5 ) ×1 0 - 5 . The detection of gaseous H2S at these pressure levels adds to the weight of evidence that the principal constituent of 1.2–3-bar cloud is likely to be H2S ice
    corecore