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Abstract Exoplanetary atmospheric retrieval refers to the inference of atmospheric
properties of an exoplanet given an observed spectrum. The atmospheric properties
include the chemical compositions, temperature profiles, clouds/hazes, and energy
circulation. These properties, in turn, can provide key insights into the atmospheric
physicochemical processes of exoplanets as well as their formation mechanisms.
Major advancements in atmospheric retrieval have been made in the last decade,
thanks to a combination of state-of-the-art spectroscopic observations and advanced
atmospheric modeling and statistical inference methods. These developments have
already resulted in key constraints on the atmospheric H2O abundances, tempera-
ture profiles, and other properties for several exoplanets. Upcoming facilities such
as the JWST will further advance this area. The present chapter is a pedagogical re-
view of this exciting frontier of exoplanetary science. The principles of atmospheric
retrievals of exoplanets are discussed in detail, including parametric models and sta-
tistical inference methods, along with a review of key results in the field. Some of
the main challenges in retrievals with current observations are discussed along with
new directions and the future landscape.

Introduction

A spectrum of an exoplanet provides a window into its atmosphere. A spectrum en-
codes information regarding the various interconnected physicochemical processes
and properties of the atmosphere which are revealed through their influence on
the radiation emerging through the atmosphere before reaching the observer. These
properties include the chemical composition, temperature structure, atmospheric cir-
culation, clouds/hazes, all of which leave their imprints on the spectrum. Given an
observed spectrum, the challenge is to disentangle these various components. This
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is the goal of ‘atmospheric retrieval’ – to retrieve the atmospheric properties of an
exoplanet from an observed spectrum. The retrieved properties can in turn provide
insights into the various atmospheric physical and chemical processes as well as
into their formation history. While the introduction of atmospheric retrieval methods
to exoplanetary science is a relatively recent and independent development (Mad-
husudhan and Seager 2009; Madhusudhan et al. 2011a), alternate techniques have
been in wide usage in the context of Earth-based remote sensing (Rodgers 2000)
and retrievals of solar system planets (Irwin et al. 2008).

What differentiates exoplanetary atmospheric retrieval from solar system appli-
cations is the uniquely challenging nature of observing exoplanetary atmospheres.
Firstly, unlike solar system planets, observed exoplanetary spectra are inherently
disk-averaged over the spatially unresolved planet. Secondly, given their astronom-
ical origins well beyond the solar system, exoplanetary spectra are naturally sub-
stantially fainter, and hence of much lower signal-to-noise (SNR), compared to
solar-system objects. Thirdly, any complementary in situ measurements or a pri-
ori knowledge possible in the solar system are unavailable for exoplanetary atmo-
spheres. Finally, the parameter space of exoplanetary atmospheres is substantially
wider than that of solar system planets. For example, while the equilibrium temper-
atures of most solar system planets lie below 300 K those of exoplanets extend up
to ∼3000 K. Similarly large ranges are natural in all other atmospheric parameters
and processes - gravities, chemical compositions, circulation patterns, degree and
type of insolation, etc, implying enormous complexity and diversity in exoplanetary
atmospheres far beyond those experienced in the solar system. The combination of
these various factors make exoplanetary atmospheres enormously more challenging
to study compared to those of solar system objects, and necessitate substantially
more robust techniques for atmospheric modeling and retrieval to make the best use
of the limited spectral data available.

The origins of atmospheric retrieval techniques for exoplanets were motivated by
the ‘degeneracy problem’ faced by early atmospheric observations. Initial molecu-
lar detections were claimed based on few channels of infrared photometry or low-
resolution spectrophotometry with low SNR (e.g. Barman 2007; Tinetti et al. 2007;
Grillmair et al. 2008; Swain et al. 2008, albeit some of these datasets have since been
revised substantially), such that the spectral features were rarely discernible to the
eye. Similarly, temperature inversions were claimed in hot Jupiters based on broad-
band photometric observations (e.g Knutson et al. 2008, 2009; Burrows et al. 2007,
2008). These inferences were made using a limited set of forward models containing
the putative molecules and assumed temperature profiles that qualitatively matched
the data. While the number of free parameters in the forward models typically far
exceeded the number of data points then available, the number of models compared
against the data were rather limited. This approach left vast areas of parameter space
unexplored and degeneracies between various model parameters unknown, thereby
providing little statistical basis to the claimed detections. The desire to provide a
statistically robust framework to derive atmospheric properties of exoplanets from
such low resolution data gave birth to the idea of atmospheric retrieval for exoplan-
ets (Madhusudhan and Seager 2009). Atmospheric retrieval techniques have since
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Fig. 1 Schematic of atmospheric retrieval. Given an observed spectrum and a parametric model of
a planetary atmosphere, a parameter estimation method is used to derive the model parameters. The
components of a typical atmospheric model are shown on the right. The free parameters typically
correspond to the pressure-temperature (P-T) profile and the composition, including the chemical
abundances and cloud/haze properties, depending on the datasets. The statistical inference and
parameter estimation methods used in contemporary retrieval codes typically allow computation
of full posterior probability density functions (PDFs) of the model parameters given a data set, a
typical output shown in Fig. 2. These PDFs can also be used to compute PDFs of derived quantities
such as elemental abundance ratios from those of molecular abundances. In recent advancements
retrieval codes are also being coupled with self-consistent equilibrium models to place constraints
on departures from radiative-convective and chemical equilibria (Gandhi and Madhusudhan 2018).

advanced greatly in tandem with parallel advancements in atmospheric observations
of exoplanets.

In the present chapter we present a pedagogical review of exoplanetary atmo-
spheric retrieval. We first present an overview of the key principles of atmospheric
retrieval. We then discuss two primary components of retrieval methods, namely,
parametric forward models and statistical inference methods. We then discuss key
results in the field from retrievals of state-of-the-art observations. We conclude with
a discussion of key issues in this area and the future landscape.

Overview of Atmospheric Retrieval

In its simplest form, ‘retrieval’ is synonymous with fitting an atmospheric model to
an observed spectrum and estimating the model parameters along with uncertain-
ties. A schematic of atmospheric retrieval for exoplanets is shown in Fig. 1 with an
example output in Fig. 2, and a list of extant retrieval codes in the literature is shown
in Table 1. A parameter estimation problem requires three key components:

1. A reliable data set, in the present case an atmospheric spectrum.
2. An accurate model, in the present case a parametric atmosphere model.
3. A suitable parameter estimation method.
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Fig. 2 Example of atmospheric retrieval for a transmission spectrum of the hot Jupiter HD
209458b. The left panel shows an observed spectrum in green along with the model fit and sig-
nificance contours in purple. The right panel shows the posterior probability distributions of the
retrieved compositions and the retrieved pressure-temperature profile.

All these components started becoming accessible for studying exoplanetary at-
mospheres only about a decade ago. The history of exoplanetary atmospheric re-
trieval is essentially the history of key developments in each of these aspects. In this
section, we discuss the basic principles of atmospheric retrieval for exoplanetary
atmospheres.

Self-consistent models vs parametric retrieval models

At the outset it is important to distinguish between the two paradigms for forward
modeling of spectra of exoplanetary atmospheres - self-consistent models and para-
metric models used for atmospheric retrieval. Self-consistent models refer to models
where the physicochemical properties and processes of the atmosphere are assumed
to be known a priori. For example, a one-dimensional equilibrium model to com-
pute thermal emission from a planet typically assumes a plane parallel atmosphere
under the constraints of hydrostatic equilibrium, chemical equilibrium, local ther-
modynamic equilibrium (LTE), and radiative-convective equilibrium. The inputs to
such a model are typically the system properties, or ‘fixed parameters’, such as the
planetary bulk properties (e.g. mass, radius, and/or gravity), orbital properties (e.g.
separation), and the spectrum of the host star irradiating the planet. Such a model
also assumes an elemental composition of the planetary atmosphere, apart from
other ancillary parameters (e.g. day-night energy redistribution efficiency, presence
of clouds, etc.). Given these input parameters and the equilibrium assumptions such
a model computes the radiative transfer in the atmosphere to generate an output
spectrum for the desired viewing geometry. Self-consistent models span a wide
range of complexity depending on the applications, ranging from 1D equilibrium
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models to 3D General Circulation Models (GCMs) as well as models with non-
equilibrium chemistry with varying levels of detail. A more detailed description of
self-consistent models can be found in a number of recent sources(e.g. Burrows
et al. 2008; Fortney et al. 2008; Heng and Marley 2017; Gandhi and Madhusudhan
2017).

While self-consistent models are invaluable for investigating detailed atmo-
spheric processes under controlled conditions they are limited in their capability
to robustly interpret observed spectra. Firstly, self-consistent models, by definition,
assume that the physics and chemical compositions underlying the atmospheric pro-
cesses are known. On the contrary, the novelty and diversity of exoplanetary atmo-
spheres means that very little is known about them a priori and that the atmospheres
could diverge substantially from the self-consistent model assumptions. Secondly,
self-consistent models are not amenable to detailed parameter estimation methods
due to their long computation times. For example, given the intricate degenera-
cies between the various atmospheric properties a typical model fitting to a spectral
dataset could involve 105 - 106 model evaluations, which are prohibitive even for the
simplest of self-consistent models, e.g. 1-D equilibrium models. The desired solu-
tion to interpret observed spectra of exoplanetary atmospheres is therefore a model-
ing paradigm which allows for (a) fast model evaluations, and (b) a parametrization
of atmospheric properties that captures properties of self-consistent models as well
as possible deviations thereof. For example, such a model should be able to repli-
cate the temperature profiles, compositions, and spectra of self-consistent models
for the same system parameters but also be flexible enough to model profiles and
compositions that are not in equilibrium.

Retrieval methods, on the other hand, employ parametric forward models to ex-
tract the atmospheric properties from observed spectra. An inspection of a nominal
cloud-free self-consistent model reveals that the atmospheric spectrum is governed
mainly by the pressure-temperature (P-T ) profile and the chemical composition of
the atmosphere, both of which are calculated self-consistently under equilibrium
conditions in such models, with the additional possibility of clouds. As such self-
consistent models have no free parameters but only fixed parameters. The key idea in
retrieval models is to use parametric forms for the P-T profile and the composition,
which leads to two key advantages. Firstly, computing the P-T profile and chemical
compositions are the most time consuming steps in self-consistent models. There-
fore, parameterizing both these properties substantially shortens the computing time
of a model. Secondly, there is no longer the need to assume equilibrium conditions
because the P-T profile and chemical compositions are estimated directly from the
data. These parametric models can be coupled with statistical parameter estimation
methods to efficiently explore the model parameter space thereby allowing to for-
mally fit the models to a given dataset and estimate the P-T profiles, compositions,
and other parameters, e.g. clouds/hazes, etc. This functionality is the backbone of
atmospheric retrieval.

An atmospheric retrieval code has two components: 1. a parametric model to
compute the atmospheric spectrum for given atmospheric parameters, 2. an opti-
mization algorithm, i.e., a statistical inference method to sample the model parame-
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ter space given the data. For a given dataset the optimization technique explores the
model parameter space in search of models fitting the data and in the process cre-
ates posterior probability distributions of all the model parameters. In the following
sections we discuss both these components in detail, followed by a review of results
from retrievals in the literature.

Table 1 Exoplanetary Atmospheric Retrieval Codes

Code Name/Authora Forward Model Inference Methodb References

Madhusudhan & Seager
Primary Transit
Secondary Eclipse Grid Search Madhusudhan and Seager (2009)

Madhusudhan et al
Primary Transit
Secondary Eclipse MCMC Madhusudhan and Seager (2010)

Madhusudhan et al. (2011a, 2014a)

CHIMERA
Primary Transit
Secondary Eclipse
Direct Imaging

OE, BMC, MCMC
and Multinest NS

Line et al. (2013, 2014); Todorov et al. (2016)

NEMESIS
Primary Transit
Secondary Eclipse OE Barstow et al. (2017)

Lee et al. (2012)

Benneke & Seager Primary Transit Multinest NS Benneke and Seager (2013)

T -REx
Primary Transit
Secondary Eclipse Multinest NS, MCMC Waldmann et al. (2015b,a)

HELIOS-R
Direct Imaging
Secondary Eclipse Multinest NS Lavie et al. (2017)

Oreshenko et al. (2017)

ATMO
Primary Transit
Secondary Eclipse MCMC Wakeford et al. (2017); Evans et al. (2017)

BART
Primary Transit
Secondary Eclipse MCMC Cubillos (2015)

Blecic (2015)

POSEIDON Primary Transit Multinest NS MacDonald and Madhusudhan (2017a)

HyDRA Secondary Eclipse Multinest NS Gandhi and Madhusudhan (2018)

a Here we only list codes reported in published works that have been used on actual observations
of exoplanetary spectra.

b The statistical inference and parameter estimation method used in the retrieval code, e.g.,
Markov chain Monte Carlo (MCMC), Bootstrap Monte Carlo (BMC), Optimal Estimation (OE),

and Nested Sampling (Multinest NS). See text for discussion on the different methods.
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Models for Atmospheric Retrieval

The forward models and their parametrization for retrieval depend on the nature of
the atmospheric observations in question. Exoplanetary atmospheric spectra used
for retrievals have been observed in primarily three configurations: (a) transmission
spectra of transiting exoplanets, (b) emission spectra of transiting exoplanets, and (c)
emission spectra of directly-imaged planets1. Depending on the observing mode and
geometry the observed spectrum is sensitive to a certain region of the atmosphere
thereby requiring the corresponding model set-up and free parameters as discussed
below.

General Framework and Free Parameters

The goal of a parametric forward model used for retrievals is to compute a model
atmospheric spectrum for the required observational configuration given the proper-
ties of the atmosphere as free parameters. So, there are two components to a forward
model, as shown in Fig. 1: (1) computing the structure of the atmosphere, i.e. pro-
files of pressure (P), temperature (T ), density (ρ), concentrations ( fi) of individual
chemical species, cloud/haze profile, if any, etc., and (2) computing the radiative
transfer for the given atmospheric structure. Here we briefly describe the general
principles for computing the atmospheric structure. The radiative transfer for each
observing configuration will be discussed in following subsections.

Common to all the models used in retrieval are some general assumptions about
the atmospheric structure. The atmospheres are assumed to be generally spheri-
cally symmetric, in hydrostatic equilibrium, and in local thermodynamic equilib-
rium (LTE). The opacities for the radiative transfer are usually computed in a line-
by-line manner (Madhusudhan and Seager 2009; Madhusudhan et al. 2014a; Line
et al. 2013; Benneke and Seager 2013) but some codes use correlated-K opacities
(Lee et al. 2012; Lavie et al. 2017). The P-T profile and chemical compositions
are free parameters in the models. Given a P-T profile, the profiles of P, T , and ρ

as a function of radial distance (r) are determined using the assumption of hydro-
static equilibrium and the ideal gas equation of state. Given the parametric chemical
composition, the mean molecular weight and total number density (n) are also deter-
mined. Once all these quantities are determined, the remaining task is to determine
the radiation field emerging from the system for the given geometry by considering
the appropriate scheme for radiative transfer in the atmosphere.

The parameters for forward models used in retrievals correspond to three broad
properties: chemical composition, P-T profile, and clouds/hazes. The chemical
composition of the atmosphere is represented by the volume mixing ratios ( fi) of

1 Recently, retrieval codes are also being built for reflection spectra of directly imaged planets that
can be obtained with future space-based facilities (Lupu et al. 2016). However, we do not discuss
these models here since they have so far only been used on simulated data and not on observed
spectra of known exoplanets.
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the species, e.g. number density of each species relative to the total number density,
implying as many free parameters as the number of species (typically between 4 and
10). Usually, for H2-rich species the prominent absorbers such as H2O, CO, CH4,
CO2, Na, K, etc., are included. Additionally, the mixing ratios are typically assumed
to be uniform in the region of the atmosphere probed by the observations. The P-T
profile is represented by one of two parametric P-T profiles used in the retrieval liter-
ature, either the 6-parameter profile prescribed by Madhusudhan and Seager (2009)
or the 5-parameter profile reported by Guillot (2010) which, for example, was used
in Line et al. (2013). Both profiles have been shown to reproduce characteristic P-T
profiles in planetary atmospheres, though the first one offers more flexibility at the
cost of an extra parameter (Line et al. 2016). Additionally, the model can include
opacity due to the presence of clouds or hazes in the atmosphere as well as the
possibility of inhomogeneous clouds (Benneke and Seager 2012; Kreidberg et al.
2015; Barstow et al. 2017; Line and Parmentier 2016; MacDonald and Madhusud-
han 2017a), adding & 3 more free parameters. In total, a typical parametric model
has &10 free parameters.

Transmission Spectra of Transiting Planets

A transmission spectrum is observed when a planet transits in front of the host
star. In this geometry some light from the host star passes through the atmosphere
at the day-night terminator region of the planet before reaching the observer. This
light is subjected to extinction, i.e. absorption and/or scattering, in the planetary
atmosphere. This modified stellar spectrum when subtracted from the original stel-
lar spectrum obtained out of transit gives the extinction spectrum of the planetary
atmosphere. A ‘transmission spectrum’ is represented as the extinction spectrum
normalized by the original stellar spectrum and is essentially the transit depth as a
function of the wavelength (Seager and Sasselov 2000; Seager 2010). The compu-
tation of a transmission spectrum at different levels of complexity, analytically and
numerically, can be found in various works (Brown 2001; Hubbard et al. 2001; Sea-
ger and Sasselov 2000; Lecavelier Des Etangs et al. 2008; Miller-Ricci et al. 2009;
Fortney et al. 2010; de Wit 2015; Bétrémieux and Kaltenegger 2015; MacDonald
and Madhusudhan 2017a; Robinson 2017). Here we provide a brief outline.

In its simplest form the transmission spectrum can be expressed as

∆λ =
(Rp,λ

Rs,λ

)2
=

2
Rs

2

∫ Rmax

0
rdr (1− e−τλ (r)), (1)

where λ is the wavelength, Rp and Rs are the planetary and stellar radii, respec-
tively, and Rmax is the maximum height of the observable atmosphere typically set
at a reasonably high value. r is the impact parameter or height in the atmosphere
perpendicular to the direction of the ray, and τ(r) is the slant optical depth through
the chord traversed by a ray at the impact parameter r. The optical depth encoun-
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tered by a ray as it traverses a chord is governed by the opacity from the planetary
atmosphere at various pressures, temperatures, and chemical compositions on its
path. The transmission spectrum is a cumulative effect of the opacity encountered
by all the rays within the planetary atmosphere before reaching the observer.

Thermal Emission Spectra of Transiting Planets

The transit geometry allows observations of thermal emission from the dayside at-
mosphere of the planet at opposition, also known as secondary eclipse or occulta-
tion. The occultation depth gives the planet star flux ratio as

fp

fs
=

Fout −Fin

Fout
, (2)

where Fout and Fin are the fluxes from the system observed out of eclipse and during
eclipse, respectively, and fp and fs are the planetary and stellar fluxes. The observed
flux from a spherical body of radius R at a distance d is related to the specific in-
tensity of radiation at its surface by fλ = πIλ R2/d2. Thermal emission models are
used to compute the planetary spectrum given by Iλ ,p whereas the stellar spectrum is
obtained from standard libraries of stellar models. The observation of fp/ fs means
that the distance to the system need not be known and, since the planetary radius is
already know from transit, only Iλ ,p needs to be computed in models.

Models of thermal emission spectra used in retrievals generally assume a 1-D
plane parallel geometry (e.g. Seager 2010; Madhusudhan and Seager 2009; Line
et al. 2013). Consider a ray with spectral intensity I0,λ originating from a layer in
the atmosphere at an optical depth τ with a direction cosine µ . The specific intensity
of the ray as it emerges out from the top of the atmosphere is given by

Iλ (τ,µ) = I0,λ (τ,µ)e
−τλ /µ − 1

µ

∫ 0

τ

Sλ e−t/µ dt. (3)

In this notation, τ = 0 at the topmost layer of the atmosphere and increases inward
such that τ → ∞ for the deepest layers. Sλ is the source function, which for an at-
mosphere in Local Thermodynamic Equilibrium (LTE) is the Planck function. A
ray generated in a deeper layer of the atmosphere traverses through the layers above
before escaping the atmosphere and reaching the observer. On its way out photons
in the ray are absorbed or enhanced depending on the opacity and temperature pro-
file in the atmosphere. For an atmosphere where the temperature decreases outward
monotonically the layers above are always cooler than the layers below leading
to absorption of the outgoing radiation. On the other hand, where temperature in-
creases outward (a thermal inversion) the source function contributes additional flux
to the outgoing ray thereby causing emission features. Furthermore, the degree of
absorption or emission is critically influenced by the magnitude of the temperature
gradient as well as the opacity of the atmosphere at the particular wavelength in
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question. Therefore, emission spectra are strong probes of the P-T profile of the
dayside atmosphere as well as the composition. The model parametrization is sim-
ilar to that of transmission spectra, with the exception that all the quantities now
correspond to the 1-D dayside-averaged properties of the atmosphere. More details
on thermal emission models used in retrieval can be found in various studies (e.g.,
Madhusudhan and Seager 2009; Seager 2010; Line et al. 2013; Waldmann et al.
2015a; Lavie et al. 2017).

Directly Imaged Spectra

Models used in retrievals of spectra from directly imaged exoplanets are essentially
the same as those of emission spectra for transiting planets discussed above. The
only difference is in the observables and, hence, free parameters. For a directly
imaged planet, only the planetary flux spectrum ( fp) is observed and essentially
no other information about the planet is measured, including the mass and radius.
As such, the planetary radius, gravity, and distance to the system are additional
free parameters in the model along with the P-T profile, chemical composition, and
cloud parameters, if any.

Statistical Inference and Parameter Estimation Methods

Central to atmospheric retrieval is the parameter estimation method used to retrieve
the model parameters given an observed spectrum. As discussed in previous sec-
tions, atmospheric retrieval of exoplanets is complicated by various factors includ-
ing the complexity of atmospheric models, strong degeneracies between the model
parameters, lack of prior knowledge, and scarcity of the data. The goal of a desired
optimization algorithm is to sample a high-dimensional (10+) parameter space ex-
tensively and efficiently in search of the model solution space given the data. In
order to address these various challenges, the parameter estimation methods used
for atmospheric retrieval have evolved greatly over the years as discussed below
and shown in table 1.

From Grid-based Sampling to Bayesian Inference

Exoplanetary atmospheric retrieval has come a long way from grid-based sampling
to detailed parameter estimation using Bayesian inference methods. The first in-
stance of exoplanetary atmospheric retrievals (Madhusudhan and Seager 2009) ex-
plored a ten-dimensional (10-D) parameter space using a large grid of 107 models
for each planet. Arguably, a grid of reasonable resolution in a 10-D parameter space
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can exceed 1010 models, which made it computationally prohibitive even for para-
metric models. Therefore, empirical metrics were used to narrow down the search
volume to a more amenable 107 models. This allowed computation of contours of
a goodness-of-fit statistic, e.g. a reduced χ2 , over the search volume and statistical
constraints on the atmospheric parameters for a given dataset. This approach helps
to obtain an empirical understanding of the model parameter space when develop-
ing a new parametric model and in conducting feasibility studies, such as limits on
computational efficiency, search volume, etc. However, once a working model is
established the exploration of the parameter space using such a method is both in-
sufficient in the grid resolution and limiting in computational efficiency. Therefore,
subsequent retrieval studies have investigated more formal parameter estimation
methods for atmospheric retrieval while retaining the general model parametriza-
tion.

Bayesian inference methods have gained prominence in the last decade for pa-
rameter estimation in diverse areas of astronomy, from precision cosmology (e.g.,
Tegmark et al. 2006) to exoplanet detection (e.g., Ford 2005; Eastman et al. 2013).
They allow evaluation of the full posterior distribution of the model parameters
given a dataset, and prior knowledge, if any, by efficiently and comprehensively
sampling the model space. Such methods are particularly useful in problems with
high-dimensional and strongly degenerate parameter spaces, as is the case for exo-
planetary atmospheres. Therefore, Bayesian inference methods have over the years
become the mainstay of exoplanetary atmospheric retrieval codes. As shown in Ta-
ble 1, retrieval codes have incorporated a range of Bayesian inference techniques
spanning MCMC (Madhusudhan et al. 2011a; Benneke and Seager 2012; Line et al.
2013), Optimal Estimation (Lee et al. 2012; Line et al. 2012), and Nested Sampling
(Benneke and Seager 2013; Waldmann et al. 2015b; Lavie et al. 2017; MacDonald
and Madhusudhan 2017a; Gandhi and Madhusudhan 2018).

Bayesian Inference

A thorough exposition on Bayesian inference methods can be found in various
sources (see e.g., Trotta 2017) and their applications to exoplanetary atmospheric
retrievals in the above studies. In what follows, we briefly discuss some key aspects.
The foundation of Bayesian inference lies in the eponymous Bayes theorem which
in the current context can be written as follows.

p(θ |d) = p(d|θ) p(θ)
p(d)

. (4)

Here, θ denotes the set of parameters of an atmospheric model and d denotes the
data, such as an observed spectrum. p(θ |d) is the posterior probability distribution
of the model parameters given the data. p(d|θ), known as the likelihood function
(L ), is the probability of the data given a parameter set. p(θ) is the prior probabil-
ity distribution (π) of the model parameters independent of the data. p(d), referred
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to as the evidence Z , is the likelihood of the data marginalized over the parameter
space. When considering a single model M, Z provides the normalization for the
posterior. However, when considering multiple models {Mi} with different param-
eterizations, the computations of Zi allows model comparisons by considering the
relative evidences between different models.

The goal in Bayesian inference is to determine the posterior distributions p(θ |d)
of the model parameters for a given dataset and considering any prior knowledge of
the parameters. The likelihood function (L ) determines the degree of model fit to
the data for a given point in the model parameter space as

L = L0 exp(−χ
2/2), (5)

where χ
2 = ∑

i
(di−mi)

2/σ
2
i . (6)

Here di and σi denote the mean and standard deviation of the ith data point, and
mi is the corresponding model prediction for the given parameter set. The differ-
ent Bayesian inference methods (e.g. MCMC versus Nested sampling) use different
approaches to sample the model parameter space and to estimate the posterior dis-
tributions and evidences.

Optimal Estimation Method

The Optimal Estimation (OE) method has its roots in Earth-based remote sensing
(Rodgers 2000) and in retrievals of planetary atmospheres in the solar system (Ir-
win et al. 2008). More recently, it has been applied to retrievals of exoplanetary
atmospheres (Lee et al. 2012). The method involves optimizing the likelihood func-
tion using a non-linear least squares minimization scheme such as the Levenberg-
Marquardt algorithm. The OE method allows specification of priors for the param-
eters in the cost function, assuming a Gaussian-distributed prior covariance matrix.
This is particularly relevant for Earth based retrievals where prior values of param-
eters can be approximated based on direct measurements (Irwin et al. 2008). The
advantage of this method is that only a small number of iterations are required to
obtain a model fit to the spectral data and is known to converge efficiently when
high resolution and high signal-to-noise (SNR) data are available, e.g., in spectral
retrievals of Earth and solar system objects.

The OE method is somewhat limited for large and multi-modal parameter spaces
with strong degeneracies and non-Gaussian posterior distributions, which is typi-
cally the case for exoplanetary atmospheres. The method has been shown to be inac-
curate for low-resolution low-SNR data as common for current exoplanetary spectra
(Line et al. 2013), but in the limit of high-resolution high-SNR data it approaches the
performance of more sophisticated Bayesian methods discussed below for single-
modal parameter spaces. The OE method assumes Gaussian distributed uncertain-
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ties in the model parameters and uses gradient-descent optimization which is ar-
guably less efficient in detecting global minima and sampling multi-modal spaces
compared to Monte Carlo methods such as MCMC or Nested sampling. Neverthe-
less, the OE method has been used in the retrievals of several exoplanetary spectra
to provide important constraints on their atmospheric properties. (Lee et al. 2012,
2014; Barstow et al. 2017).

Markov chain Monte Carlo (MCMC)

The MCMC method is one of the most widely used Bayesian inference methods
in astronomy (Trotta 2017). In this method the exploration of the parameter space
starts at an initial guess and progresses as a random walk wherein any given step
in the “chain” depends only on the previous step. For example, in the commonly
used Metropolis-Hastings algorithm the progression of the random walk is guided
by the following procedure. At each step in the chain the decision to accept the next
step is based on the ratio of the posteriors between the two steps. Consider a current
step with parameter set θi giving the posterior p(θi|d). The parameter set for next
step θi+1 is drawn from a pre-specified distribution, such as a Gaussian centered
on the current step with a pre-specified variance (“jump-length”) for each param-
eter, and has a posterior p(θi+1|d). Then, step i+1 is accepted with a probability
p = min(p(θi+1|d)/p(θi|d),1) such that step i+1 is accepted if p is greater than a
random number drawn from a uniform distribution between 0 and 1. The resulting
full chain of steps through the parameter space essentially gives the joint posterior
probability distribution of all the model parameters. More details on the MCMC
method and variations thereof can be found in various works (Tegmark et al. 2004;
Ford 2006; Line et al. 2013; Trotta 2017).

The MCMC method has been extensively used for exoplanetary atmospheric re-
trievals (Madhusudhan et al. 2011a; Benneke and Seager 2012; Line et al. 2013).
The method allows efficient and extensive sampling of the posterior distribution, and
allows the specification of prior distributions of the parameters where applicable.
Generally for exoplanetary atmospheres there is usually very little prior knowledge.
Therefore, retrievals typically allow for uniform priors with conservative ranges.
Despite its capabilities, the MCMC method faces some limitations, especially for
complex parameter spaces. For example, the MCMC method is not optimized for
calculating the evidence Z which is computationally demanding. This is acceptable
for parameter estimation of a given model, where Z acts as a normalization con-
stant, but makes it challenging to conduct model comparisons when multiple models
are plausible. Secondly, the MCMC method requires the user to specify the width of
the distribution from which to draw each subsequent step, which is judged by trial
and error and can effect convergence. These limitations are alleviated in the Nested
Sampling method discussed below.
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Nested Sampling

Recently, the Nested Sampling (NS) method has emerged as a powerful alternative
to the MCMC method in Bayesian inference (Skilling 2006; Shaw et al. 2007; Feroz
et al. 2009). As such, it has been promptly adopted in exoplanetary atmospheric re-
trieval codes (e.g., Benneke and Seager 2013; Line et al. 2015; Waldmann et al.
2015b; Lavie et al. 2017; MacDonald and Madhusudhan 2017a; Gandhi and Mad-
husudhan 2018). The NS method is also a Monte Carlo method like the MCMC
but with a different approach to sample the parameter space. Instead of starting
with an initial guess and following a Markov chain, as in MCMC, the NS method
starts with a given number of “live points” in the parameter space randomly drawn
from the prior distribution (Feroz et al. 2009). At each step the point with the low-
est likelihood (Lmin) is discarded and replaced by another point drawn from the
prior distribution with L > Lmin, i.e. from the prior volume contained within the
iso-likelihood contour of Lmin. Thus, the live points are drawn from progressively
shrinking ellipsoids bound by the iso-likelihood contours in subsequent trials. The
process is repeated as the contours sweep through the parameter space and the ev-
idence Z is calculated until a pre-set tolerance on the fractional change in Z is
reached. The required tolerance ensures that convergence is naturally reached. Once
the evidence is determined, the posterior distributions are computed based on all the
points sampled in the parameter space over the entire optimization process.

The NS method has several advantages over other Bayesian inference methods.
One of the main advantages of the NS method is that it is designed to be highly
efficient for computing the Bayesian evidence (Z ) for a given model, which makes
it particularly desirable when comparing between multiple models. In efficiently
exploring the model parameter space to compute Z with high accuracy, the NS
method also naturally allows high density sampling of the posterior distribution.
This makes the NS method especially suited for handling complex model param-
eter spaces with multimodal and non-Gaussian posterior distributions. Secondly,
the optimisation algorithm is naturally parallelised, thereby significantly reducing
computation time. Finally, unlike MCMC, it does not require specification of the
distribution from which to sample the parameters which would be required in each
step of a Markov Chain.

Results

The retrieval methods described above have been used to retrieve chemical abun-
dances, temperature profiles, and other atmospheric parameters for a number of ex-
oplanets using different observational methods. Here we discuss the constraints re-
ported in the literature for transiting planets observed via transmission and emission
spectra as well as directly imaged planets in emission spectra.
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Fig. 3 Retrieved H2O abundances for exoplanets in the literature with uncertainties in H2O mix-
ing ratios below 2 dex. The abundances derived from spectra obtained using different methods
are colour-coded as shown at the top. Also shown (in blue) are the CH4 abundances for the four
solar system giant planets for which the H2O abundances are not known. The solar system CH4
abundances are obtained for Jupiter and Saturn from Atreya et al. (2016),Wong et al. (2004), and
Fletcher et al. (2009), for Neptune from Karkoschka and Tomasko (2011), and for Uranus from
Sromovsky et al. (2011). The exoplanet H2O abundances are from the various works: HD 209458b
(Madhusudhan et al. 2014a; MacDonald and Madhusudhan 2017a; Line et al. 2016), HD 189733b
(Madhusudhan et al. 2014a; Waldmann et al. 2015a), WASP-12b (Kreidberg et al. 2015), WASP-
43b (Kreidberg et al. 2014a), WASP-33b (Haynes et al. 2015), TrES-3 (Line et al. 2014), GJ 436b
(Moses et al. 2013a), HAT-P-26b (Wakeford et al. 2017), WASP-39b (Wakeford et al. 2018),
HR 8799 planets (Lavie et al. 2017), κ And b (Todorov et al. 2016).

Transmission spectra of transiting exoplanets

Most of the retrievals to date have been conducted on transmission spectra. A trans-
mission spectrum probes the atmosphere at the day-night terminator region of a tran-
siting exoplanet. The retrieved properties include chemical compositions, pressure-
temperature (P-T) profiles, and cloud properties. In general, a transmission spectrum
is less sensitive to detailed shape of the P-T profile but still provides a reasonable
constraint on the representative photospheric temperature at the day-night termina-
tor. On the other hand, the transmission spectrum is highly sensitive to the composi-
tion and presence of clouds/hazes. In what follows, we discuss published statistical
constraints on atmospheric properties of exoplanets using retrievals of transmission
spectra.
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Key sources of data

Here we focus on reported high-precision transmission spectra with instruments
whose systematics are well characterized and results reproducible. Datasets used
in initial retrieval studies were limited by large uncertainties and/or underestimated
systematics rendering the abundance determinations unreliable. The advent of the
HST WFC3 spectrograph (McCullough and MacKenty 2012) has truly opened the
era of high-precision abundance measurements from transmission spectra of exo-
planets. The HST WFC3 G141 grism with its spectral range of 1.1-1.7 µm contains
strong absorption features due to H2O, along with other molecules (e.g. CH4, NH3,
HCN). Additionally, the WFC3 instrument has proven to be highly stable and con-
ducive to transit spectroscopy with demonstrated understanding of the systematics
in numerous studies (e.g., Deming et al. 2013; Mandell et al. 2013; McCullough
et al. 2014; Kreidberg et al. 2014b). Besides HST WFC3 in the near-infrared, the
HST STIS spectrograph in the visible is sensitive to optical slopes of transmission
spectra which in turn constrain sources of scattering (e.g. aerosols or molecular
Rayleigh scattering) in the atmospheres (e.g., Pont et al. 2008, 2013; Sing et al.
2016; Wakeford and Sing 2015; Pinhas and Madhusudhan 2017). Other data sources
used in retrievals include photometric data in the infrared obtained with the Spitzer
Space Telescope typically at 3.6 µm and 4.5 µm (e.g., Fraine et al. 2014) as well
as ground-based spectra/photometry in the visible and near-infrared (e.g., Sedaghati
et al. 2017).

Reporting retrieved abundances

The retrieved chemical abundances are typically reported as volume mixing ratios
(i.e. number density of a species relative to total or relative to H2 which is the dom-
inant species in giant planet atmospheres). It is also common to refer to the mixing
ratios relative to “solar” values, i.e., those expected in thermochemical equilibrium
at the relevant temperature (T ) for an atmosphere with solar elemental abundances,
O/H = 5× 10−4, C/H = 2.5× 10−4, C/O = 0.5 (Asplund et al. 2009). The portion of
oxygen in H2O in chemical equilibrium depends primarily on the overall metallicity,
the C/O ratio, and the temperature and pressure (see e.g., Madhusudhan et al. 2016,
for a detailed review on atmospheric chemistry). For solar abundance atmospheres
with T ∼ 1200-3500 K and .1200 K, the typical value of solar H2O/H2 is 5×
10−4 and ∼10−3, respectively, with the remaining oxygen locked in CO and other
species. Reported H2O abundances greater or lower than these values are referred
to as super-solar or sub-solar H2O, respectively.

Abundance estimates in hot Jupiters

The majority of retrieved abundances using HST WFC3 transmission spectra have
been reported for H2O in hot Jupiters, as shown in Fig. 3. The earliest high-precision
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WFC3 transmission spectra were observed for the hot Jupiters HD 209458b (Dem-
ing et al. 2013) and HD 189733b (McCullough et al. 2014). Atmospheric retrievals
of these spectra (Madhusudhan et al. 2014a) suggested sub-solar H2O abundances
in these hot Jupiters, assuming cloud-free atmospheres. Other notable examples of
high-precision transmission retrievals include the hot Jupiters WASP-43b (Kreid-
berg et al. 2014b) and WASP-12b (Kreidberg et al. 2015) for which H2O abun-
dances between 0.1-3× solar have been derived. H2O abundance estimates in giant
exoplanets today are routinely achieving uncertainties below 1 dex, as shown in
Fig. 3, which is a significant achievement considering that the true H2O abundance
is not known for any of the giant planets in the solar system owing to their low
temperatures (Atreya et al. 2016; Madhusudhan et al. 2016).

The precision of an abundance estimate is directly related to the quality of the
observed spectrum. In particular the two factors of an observed spectrum that affect
critically are (a) the precision, and (b) the spectral range. In particular the availabil-
ity of data spanning the visible (e.g. using HST STIS) to infrared (e.g. HST WFC3
and Spitzer) range is critical for accurate retrievals of transmission spectra. The best
example is the visible-IR transmission spectrum of HD 209458b where the average
precision on the data is ∼25 ppm in the WFC3 which led to an abundance estimate
with an uncertainty of . 0.5 dex (Madhusudhan et al. 2014a; Barstow et al. 2017;
MacDonald and Madhusudhan 2017a). Such a dataset was feasible for HD 209458b
considering that it orbits one of the brightest exoplanet host stars (V = 7.8 mag-
nitude). Fainter host stars often require integration of multiple spectra to achieve
similar precisions (Stevenson et al. 2014b; Kreidberg et al. 2014b). Thus, focused
repeat observations with HST have the potential to yield high-precision abundance
estimates in more giant exoplanets. The upcoming JWST will substantially revo-
lutionise abundance determinations in exoplanet atmospheres with a much larger
aperture and spectral range (Greene et al. 2016).

Beyond H2O abundances, constraints on other atmospheric properties from re-
trievals of transmission spectra are relatively sparse. In recent years, thanks to the
combination of near-infrared and optical spectra, there have been nominal con-
straints on the parameters of clouds/hazes in the atmospheres, such as cloud top
pressure, optical slopes due to hazes, patchiness, Na/K, etc (Barstow et al. 2017;
MacDonald and Madhusudhan 2017a). Recent retrievals are also suggesting the first
indications of Nitrogen-based chemistry in the form of NH3 and/or HCN (MacDon-
ald and Madhusudhan 2017b). Other recent developments in transmission retrievals
include the detection of TiO in the transmission spectrum of hot Jupiter WASP-19b
(Sedaghati et al. 2017).

A recurring finding in the majority of transmission spectra of hot Jupiters is that
the amplitudes of H2O features in the spectra are significantly muted (e.g., Deming
et al. 2013; McCullough et al. 2014; Mandell et al. 2013; Kreidberg et al. 2015).
The features contain the equivalent of ∼2 atmospheric scale heights compared to
5-10 expected for a saturated molecular absorption feature (e.g. Madhusudhan and
Redfield 2015). It has been argued that such muted features can be caused by ei-
ther clouds/hazes in the atmospheres obstructing parts of the atmospheres from
view (Deming et al. 2013; Sing et al. 2016) or due to inherently low H2O abun-
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dances in the atmospheres (Madhusudhan et al. 2014a). In a recent study Sing et al.
(2016) reported broadband transmission spectra of ten hot Jupiters and, using a for-
ward model grid, suggested that a diversity of clouds/hazes with solar or super-solar
H2O abundances could explain all the spectra. However, a subsequent retrieval study
(Barstow et al. 2017) reported the contrary that almost all the hot Jupiters in the Sing
et al. (2016) sample indicated sub-solar H2O abundances, consistent with other re-
trieval studies (Madhusudhan et al. 2014a; MacDonald and Madhusudhan 2017a)
for some of the planets. This demonstrates the importance of retrievals over tradi-
tional equilibrium models in deriving abundances. On the other hand, transmission
retrievals of some hot Jupiters, e.g. WASP-43b and WASP-12b (Kreidberg et al.
2014a, 2015), while also consistent with sub-solar H2O abundances have uncertain-
ties large enough to allow somewhat super-solar abundances.

Abundance estimates in hot Neptunes and super-Earths

In recent years, we are beginning to witness detections of molecular features in
transmission spectra of extrasolar ice giants, the so called hot Neptunes. Early HST
WFC3 observations of hot Neptunes (e.g., GJ 436b, Knutson et al. 2014) and super-
Earths (e.g., GJ 1214b, Kreidberg et al. 2014a) showed mostly flat transmission
spectra. However, more recent observations of hot Neptunes HAT-P-11b (Fraine
et al. 2014) and HAT-P-26b (Wakeford et al. 2017) have shown clear absorption
features of H2O at high significance. Retrievals of these spectra have reported abun-
dances in terms of atmospheric metallicity with 1-σ constraints of ∼40-300× solar
for HAT-P-11b and ∼1-26×solar for HAT-P-26b. Note that here H2O is assumed
to be the primary carrier of oxygen whose abundance in turn is used to represent
the metallicity. Besides these abundance constraints currently there is still a dearth
of precise abundance constraints for hot Neptunes and super-Earths. The imminent
arrival of JWST is expected to revolutionize abundance estimates in such low mass
planets.

Thermal emission spectra of transiting exoplanets

Emission spectra of transiting exoplanets provide constraints on the properties
of their dayside atmospheres. Unlike transmission spectra, emission spectra are
strongly sensitive not only to the chemical composition but also to the P-T profile of
the atmosphere. It is thermal emission directly from the planet that is measured and
is strongly governed by the temperature distribution in the atmosphere. Emission
measurements in one or more bands have been measured for over 50 exoplanets to
date. However, in order to conduct detailed retrieval of the atmospheric properties,
observations over a long spectral range are required. Such observations are available
for .10 planets to date.
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Thermal emission retrievals have provided key constraints on three properties of
the dayside atmospheres of hot transiting exoplanets: molecular abundances, C/O
ratios, and thermal inversions. The constraints have been reported mostly for hot
Jupiters but also include one hot Neptune. The contributions of these properties
in different observational bandpasses are discussed in several works (e.g. Burrows
et al. 2008; Madhusudhan 2012; Madhusudhan et al. 2014b; Moses et al. 2013b;
Mollière et al. 2017).

Molecular Abundances

The chemical abundances have been reported mainly for H2O with broad constraints
on a few other species such as CO, CO2, and CH4. Figure 3 shows the H2O abun-
dance constraints from various studies. The earliest abundance estimates in emission
retrievals were based primarily on broadband Spitzer photometry (Madhusudhan
and Seager 2009; Stevenson et al. 2010; Madhusudhan and Seager 2011; Lee et al.
2012; Line et al. 2013) and constrained molecular abundances with large uncertain-
ties. Additionally, the most extensive Spitzer observations used in such retrievals,
e.g. for hot Jupiters HD 189733b (Charbonneau et al. 2008) and HD 209458b (Knut-
son et al. 2008) have since been revised to very different values (e.g. Knutson et al.
2012; Diamond-Lowe et al. 2014) rendering the former abundances unreliable. The
success of HST WFC3 and ground-based near-infrared photometry in recent years
have led to more reliable constraints on H2O abundances. Such reported H2O abun-
dances on the daysides of hot Jupiters include 0.4-3.5× solar in WASP-43b (Kreid-
berg et al. 2014b), .0.01× solar in WASP-12b (Madhusudhan et al. 2011a; Steven-
son et al. 2014a), 0.06-10× solar in HD 209458b (Line et al. 2016), . 0.2 × solar
in WASP-33b (Haynes et al. 2015), among others.

The sum-total of abundance measurements convey two key findings. Firstly, with
the combination of high-precision emission data from HST, Spitzer, and ground-
based instruments we are now able to measure H2O abundances with uncertainties
to within an order of magnitude. Secondly, similar to transmission spectra, the abun-
dance estimates from emission retrievals are also suggesting H2O abundances lower
than originally expected. The median values of the H2O abundances for most of the
planets reported to date are sub-solar, though the uncertainties allow between 0.1-
3.5× solar values. Additionally, the incidence of clouds/hazes which are degenerate
with the H2O abundance determinations in transmission spectra is less of a problem
in emission retrievals, given the much higher dayside temperatures and the fact that
the spectrum probes the temperature profile and composition above a putative cloud
deck if any.

Abundance retrievals for species other than H2O are significantly less precise.
Nevertheless, several retrieval studies have reported useful limits on carbon-bearing
species with potentially interesting implications. For example, significantly super-
solar abundances of CO and CO2 have been reported in the hot Neptune GJ 436b
suggesting strong non-equilibrium chemistry and high (& 10-30×solar) overall
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metallicity (Stevenson et al. 2010; Madhusudhan and Seager 2011; Lanotte et al.
2014).

C/O Ratios

An important development in emission retrievals is the feasibility of constraining
C/O ratios in exoplanetary atmospheres. This was first demonstrated for the hot
Jupiter WASP-12b using MCMC retrievals on a multi-band photometric dataset
spanning a wide spectral range from 1-10 µm comprising Spitzer and ground-based
photometry (Madhusudhan et al. 2011a). The retrieved abundances suggested low
H2O (.0.01× solar) and higher CO and CH4 compared to H2O leading to a C/O
≥ 1, which is significantly carbon-rich compared to the solar C/O of 0.54 with im-
portant implications (Madhusudhan et al. 2011b; Madhusudhan 2012). The claim of
high C/O in WASP-12b has been contested in subsequent studies (e.g., Crossfield
et al. 2012; Cowan et al. 2012) though a recent analysis considering newer Spitzer
and HST observations reinstated the claim (Stevenson et al. 2014a), especially due
to the non-detection of H2O in the WFC3 emission spectrum. On the other hand, a
transmission spectrum of the terminator shows a low-amplitude H2O feature that is
consistent with a oxygen-rich as well as a carbon-rich composition (Kreidberg et al.
2015). The dependance of H2O abundance on the C/O ratio varies with temperature;
for C/O = 1 the H2O abundance is more strongly depleted at higher temperatures
typical of dayside atmospheres (Madhusudhan 2012). Nevertheless, the C/O ratio
of WASP-12b is currently still under debate, considering the limited data available,
which can be resolved by future observations with the upcoming JWST.

The case of WASP-12b demonstrated the potential of thermal emission spectra
to constrain C/O ratios in exoplanetary atmospheres. It is to be noted, however, that
reliable constraints on C/O ratios are possible only when observations over a long
spectral baseline are available with the observed bands containing spectral features
from both H2O as well as prominent carbon-bearing species such as CO and/or
CH4. This is ostensibly possible with the combination of spectra with HST WFC3
and the Spitzer IRAC bands between 3-8 µm. However, few systems have such
extensive datasets. Using the limited datasets available, C/O ratios for several hot
Jupiters have been reported to lie between 0.1-1 (Madhusudhan 2012; Line et al.
2014; Haynes et al. 2015; Kreidberg et al. 2014b; Line et al. 2016). On the other
hand, when adequate data are not available and only H2O abundances can be mea-
sured from HST WFC3, some studies have also attempted to infer the C/O ratio
based on assumptions of thermochemical equilibrium (Kreidberg et al. 2015; Line
et al. 2016). Overall, the C/O ratio has emerged to be a measurable quantity of high
importance for future higher resolution spectroscopy, e.g., with JWST.
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Thermal Inversions

Thermal emission spectra have also been instrumental in constraining temperature
profiles in the dayside atmospheres of exoplanets. In particular, the search for ther-
mal inversions in hot Jupiter atmospheres has been one of the most important pur-
suits in exoplanetary atmospheres in the past decade. The temperature gradient in
the atmosphere along with the composition, through opacity, governs the amplitude
of the spectral features. Whereas a temperature profile monotonically decreasing
outward gives rise to absorption features, that increasing outward (i.e. a thermal
inversion) gives rise to emission features. On the other hand, an isothermal atmo-
sphere emits as a blackbody with the corresponding temperature. These features
have been predicted using self-consistent models well before retrievals came into
practice (e.g., Hubeny et al. 2003; Burrows et al. 2007; Fortney et al. 2008).

Retrievals of emission spectra of transiting hot Jupiters have revealed the diver-
sity in their P-T profiles. Initial retrievals (Madhusudhan and Seager 2009, 2010)
revealed the strong degeneracies between temperature profiles and compositions.
Thanks to recent HST WFC3 spectra and ground-based photometry of thermal
emission, strong constraints on temperature profiles have become possible for sev-
eral transiting exoplanets. Most of these planets observed to date have been found
to host no thermal inversions (Madhusudhan and Seager 2010; Line et al. 2013),
some highlights being WASP-43b (Kreidberg et al. 2014b; Stevenson et al. 2014b),
HD 209458b (Line et al. 2016), and WASP-12b (Madhusudhan et al. 2011a; Steven-
son et al. 2014a). On the other hand, thermal inversions have been convincingly de-
tected in three hot Jupiters: WASP-33b (Haynes et al. 2015), WASP-121b (Evans
et al. 2017) and WASP-18b (Sheppard et al. 2017), which are amongst the most
extremely irradiated hot Jupiters known, with equilibrium temperatures of ∼3000
K. Therefore, retrievals of emission spectra to date show that thermal inversions are
prevalent in only the hottest of hot Jupiters at temperatures of∼3000 K, much above
the ∼1500 K boundary originally suggested by Fortney et al. (2008).

Thermal emission spectra of directly imaged planets

Retrievals of directly-imaged planets are still in their infancy considering the small
number of such planets with atmospheric spectra. On the one hand, the spectra are
typically of much higher quality than those currently available for transiting plan-
ets (Barman et al. 2011; Konopacky et al. 2013). On the other hand, direct imaging
retrievals are more challenging compared to transiting planet retrievals because of
the various unknowns and degeneracies. For example, for directly imaged planets
only the emission spectrum of the planet is observed without much a priori informa-
tion about several of the system parameters, e.g. radius, gravity/mass, any measure
of temperature, distance to the system, etc. Therefore, all these quantities need to
be set as free parameters in the retrievals. And, considering that these are typically
young systems, the luminosity and radius of the planet are strongly dependent on
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the age and can have a wide range(Burrows et al. 2001). Finally, given the low levels
of irradiation, such planets have been known to host significantly dusty atmospheres
(Marley et al. 2012) and convection playing a stronger role in the temperature pro-
files compared to transiting planets which are highly irradiated.

Some recent studies have made important advancements towards retrievals of
directly imaged planets with important constraints on their atmospheric properties.
Retrievals have been reported for the planets in the HR 8799 system (Lee et al. 2013;
Lavie et al. 2017) and for the κ Andromedae b (Todorov et al. 2016), using different
retrievals approaches: NEMESIS Optimal Estimation (Lee et al. 2013), MULTI-
NEST Nested sampling (Lavie et al. 2017), and MCMC (Todorov et al. 2016). Lee
et al. (2013) and Lavie et al. (2017) reported constraints on the abundances of the
prominent molecules H2O, CO, CH4, and CO2 in HR 8799b, with the later study
also reporting constraints on a subset of the species in HR 8799c,d,e. Generally,
the studies find super-solar abundances in all the species and super-solar C/O ratios
(∼0.75-0.96) for HR 8799b and c. And, Lavie et al. (2017) report sub-solar C/H
and C/O and super-solar O/H for HR 8799 d and e. On the other hand, Todorov
et al. (2016) report the H2O abundance of κ Andromedae b to be nearly solar, albeit
with a larger uncertainty. These studies demonstrate the high-precisions with which
abundances can be retrieved for directly-imaged planets. On the other hand, the
studies also reveal the challenges in such retrievals. For example, Lee et al. (2013)
find too small radii for young giant planets (0.6-0.8) that are seemingly unphysical
whereas Lavie et al. (2017) had to adopt a strong prior on the radii (1.2 ± 0.1 RJ),
log(gravity) (4.1 ± 0.3), and distance (39.4 ± 1 pc) to facilitate the retrievals.

Challenges and Future Directions

Retrieval is an extremely powerful tool but also one to be used with due care. In-
herent to Bayesian inference is the grand reality that in the limit of very poor data
quality the posterior asymptotes to the prior. Therefore, arguably the best approach
in retrieval is to allow the data to shepherd one to the reality of an atmosphere with
as few model assumptions as absolutely necessary. On the other hand, the insuf-
ficient data quality means that one is tempted to recourse to arguments of physi-
cal/chemical plausibility to narrow down the solution space, leaving open the defi-
nition of plausibility in the unknown conditions of an exoplanetary atmosphere. Fur-
thermore, given the highly complex, non-linear, and degenerate parameter space of
atmospheric models, any statistical inference algorithm used must ensure to sample
the parameter space rigorously and efficiently. The main limitation at the moment
is the data quality, of a limited spectral range and precision, which is expected to
greatly improve with the upcoming JWST and large ground-based facilities. In what
follows, we discuss some key challenges faced in retrievals of exoplanetary spectra
with current data in the hope that they serve as important lessons for the future.
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Degeneracies in Abundance Estimates

The main challenge in abundance estimates using retrievals is the prevalence of
strong degeneracies between different chemical species and among other atmo-
spheric properties. Foremost among them is the degeneracy between clouds/hazes
and abundances, particularly while retrieving transmission spectra. A low ampli-
tude spectral feature can be caused either by clouds/hazes (Deming et al. 2013;
Sing et al. 2016) or due to inherently low abundances (Madhusudhan et al. 2014a).
Secondly, in transmission retrievals the abundances are also degenerate with the ref-
erence pressure corresponding to the quoted radius of the planet if spectra in only a
limited infrared spectral range, such as HST WFC3, are available (Heng and Kitz-
mann 2017). Both these degeneracies can be resolved with high-precision spectra
over a long spectral baseline, from visible to infrared, and with multiple molecular
features, as demonstrated in some recent studies (Barstow et al. 2017; MacDon-
ald and Madhusudhan 2017a). While such data are available only for a handful of
planets currently, these examples highlight the critical importance of optical spectra
along with infrared spectra in constraining molecular abundances.

Low-amplitude Spectral Features

One of the greatest surprises in transit spectroscopy in recent years is the ubiqui-
tously low amplitudes in the spectra. As discussed in the results section, even for
the hottest of hot Jupiters the spectra are surprisingly muted, amounting to .2 scale
heights instead of 5-8 expected for a saturated absorption feature. This is seen in
both transmission as well as emission spectra. The low amplitudes in transmission
spectra could be due to clouds or low H2O abundances. Retrievals of current broad-
band data with models including clouds/hazes still suggest sub-solar abundances
as the favored explanation for hot Jupiters (Barstow et al. 2017; MacDonald and
Madhusudhan 2017a) but it remains to be further investigated with future data. On
the other hand, the low amplitudes in emission spectra could potentially be due to
low temperature gradients or, again, low abundances. Whatever the present inter-
pretation, the ground reality is that spectral observations and retrievals using future
facilities such as JWST should be prepared for low amplitude spectral features in
potentially most planets.

Biases in Estimating C/O ratios and Metallicities

When data are insufficient to constrain a certain quantity, retrievals sometimes in-
voke additional model assumptions to narrow down the solution space. While this
could be useful to some extent to rule out extremely unphysical solutions, caution
must be exercised on this path. For example, this is commonly seen in quoting
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constraints on quantities such as the C/O ratio and metallicities (Kreidberg et al.
2015; Line et al. 2016; Wakeford et al. 2017) when only HST WFC3 data are avail-
able with constraints on only the H2O abundance. Retrievers then assume chemical
equilibrium, amongst other factors, to estimate which C/O ratios could cause the
retrieved H2O abundances for the retrieved P-T profiles; the process is sometimes
termed “chemically consistent retrievals”. Similarly, H2O is often used as a proxy
for metallicity by inherently assuming a certain C/O ratio. At the extreme end of
this trend, inferences of metallicities are sometimes made solely using equilibrium
forward models, i.e., without retrievals (Sing et al. 2016), only to find contrasting
conclusions when retrievals are performed later on the same datasets (Barstow et al.
2017). Whereas Sing et al. (2016) claimed none of the ten planets in their survey
were consistent with sub-solar H2O, Barstow et al. (2017) reported that all the plan-
ets were consistent with sub-solar H2O. Therefore, care must be taken against using
such inferences of C/O ratios or metallicities with equilibrium assumptions as a true
measure of the atmospheric composition since various non-equilibrium effects are
unaccounted for in the process. Ultimately, the most reliable estimates are those
that are obtained from retrievals with minimal model assumptions and guided by
high-fidelity datasets.

New Trends and Future Prospects

New advancements in retrievals are being made in several directions. With increas-
ing data quality there is increasing sophistication in the forward models used in re-
trievals. One development in this direction is the consideration of two-dimensional
effects, such as multiple P-T profiles (Feng et al. 2016) and inhomogeneous cloud
cover(Line and Parmentier 2016; MacDonald and Madhusudhan 2017a). Secondly,
we are also seeing the emergence of “hybrid” codes where retrievals are fully inter-
faced with self-consistent equilibrium models to place constraints on disequilibrium
phenomena, such as departures from radiative-convective and thermochemical equi-
libria (Gandhi and Madhusudhan 2018). Thirdly, on the observational side, a major
development is the idea of combining low-resolution transit spectroscopy with very
high resolution (R∼105) ground-based spectroscopy(Brogi et al. 2017). The latter
method, which is essentially doppler spectroscopy of molecular lines in the plane-
tary atmosphere, has in recent years proved to be the most effective technique for
conclusive detections of molecular species in exoplanetary atmospheres (Snellen
et al. 2010; Brogi et al. 2012; Birkby et al. 2017). Combining this method with tra-
ditional transit spectroscopy provides a new avenue for high-fidelity atmospheric
retrievals. There have also been efforts to try machine learning techniques such as
artificial neural networks for retrievals (Waldmann 2016) but their efficacy on real
datasets and benefits over state-of-the-art Bayesian inference methods remains to be
seen.

We are at the beginning of a revolution in atmospheric characterization of ex-
oplanets. Atmospheric retrievals today are equipped with state-of-the-art Bayesian
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inference techniques combined with detailed forward models and are limited only
by current data quality. The latter is going to change very soon with the imminent
arrival of JWST and ramping up of ground-based spectroscopy with large facilities.
JWST will have a broad spectral range (∼0.6-25 µm), high spectral resolution and
precision. These capabilities will allow detection of a wide range of species besides
H2O, such as CO, CO2, CH4, NH3, and others, and precise determinations of their
abundances (Greene et al. 2016), along with constraints on the P-T profiles, aerosols
forming clouds/hazes, energy budget, etc. These constraints in turn will allow us to
understand a wide range of atmospheric processes such as non-equilibrium chem-
istry, thermal inversions, atmospheric dynamics, cloud formation, etc. The molecu-
lar abundances will also allow precise constraints on the C/H, O/H, C/O, and other
elemental abundance ratios, which will be instrumental in constraining planetary
formation conditions (see e.g. review by Madhusudhan et al. 2016). And, finally,
atmospheric retrievals of low mass planets could pave the way to the first detections
of biosignatures epitomizing the holy grail of the exoplanetary science.
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