459 research outputs found

    Fluctuations of the Retarded Van der Waals Force

    Get PDF
    The retarded Van der Waals force between a polarizable particle and a perfectly conducting plate is re-examined. The expression for this force given by Casimir and Polder represents a mean force, but there are large fluctuations around this mean value on short time scales which are of the same order of magnitude as the mean force itself. However, these fluctuations occur on time scales which are typically of the order of the light travel time between the atom and the plate. As a consequence, they will not be observed in an experiment which measures the force averaged over a much longer time. In the large time limit, the magnitude of the mean squared velocity of a test particle due to this fluctuating Van der Waals force approaches a constant, and is similar to a Brownian motion of a test particle in an thermal bath with an effective temperature. However the fluctuations are not isotropic in this case, and the shift in the mean square velocity components can even be negative. We interpret this negative shift to correspond to a reduction in the velocity spread of a wavepacket. The force fluctuations discussed in this paper are special case of the more general problem of stress tensor fluctuations. These are of interest in a variety of areas fo physics, including gravity theory. Thus the effects of Van der Waals force fluctuations serve as a useful model for better understanding quantum effects in gravity theory.Comment: 14 pages, no figure

    Three-generation flavor transitions and decays of supernova relic neutrinos

    Get PDF
    If neutrinos have mass, they can also decay. Decay lifetimes of cosmological interest can be probed, in principle, through the detection of the redshifted, diffuse neutrino flux produced by all past supernovae--the so-called supernova relic neutrino (SRN) flux. In this work, we solve the SRN kinetic equations in the general case of three-generation flavor transitions followed by invisible (nonradiative) two-body decays. We then use the general solution to calculate observable SRN spectra in some representative decay scenarios. It is shown that, in the presence of decay, the SRN event rate can basically span the whole range below the current experimental upper bound--a range accessible to future experimental projects. Radiative SRN decays are also briefly discussed.Comment: 25 pages, including 7 figure

    k=0Magnetic Structure and Absence of Ferroelectricity in SmFeO3

    Get PDF
    SmFeO3 has attracted considerable attention very recently due to the reported multiferroic properties above room-temperature. We have performed powder and single crystal neutron diffraction as well as complementary polarization dependent soft X-ray absorption spectroscopy measurements on floating-zone grown SmFeO3 single crystals in order to determine its magnetic structure. We found a k=0 G-type collinear antiferromagnetic structure that is not compatible with inverse Dzyaloshinskii-Moriya interaction driven ferroelectricity. While the structural data reveals a clear sign for magneto-elastic coupling at the N\'eel-temperature of ~675 K, the dielectric measurements remain silent as far as ferroelectricity is concerned

    Corrosion behaviour of micro-plasma arc welded stainless steels in H3PO4 under flowing conditions at different temperatures

    Full text link
    [EN] This paper studies the general corrosion behaviour of the micro-plasma arc welded AISI 316L stainless steel in phosphoric acid at different temperatures (25-60°C) and at a Reynolds number of 1456. Galvanic corrosion has been studied using zero-resistance ammeter (ZRA) measurements and polarization curves (by the mixed potential theory). Results show that the microstructure of the stainless steel is modified due to the micro-plasma arc welding procedure. Coupled current density values obtained from polarization curves increase with temperature. ZRA tests present the highest iG values at 60°C; however, the values are very close to zero for all the temperatures studied. This is in agreement with the low value of the compatibility limit and of the parameter which evaluates the importance of the galvanic phenomenon. Both techniques present the most positive potentials at the highest temperature. This study reveals that micro-plasma arc welded AISI 316L stainless steels are appropriated working in the studied H3PO4 media from a corrosion point of view for all the temperatures analysedThe authors would like to express their gratitude to the Spanish MAEC (PCI Mediterráneo C/8196/07, C/018046/08, D/023608/09) and to Asuncion Jaime for her translation assistance.Sánchez Tovar, R.; Montañés Sanjuan, MT.; García Antón, J.; Guenbour, A.; Ben Bachir, A. (2011). Corrosion behaviour of micro-plasma arc welded stainless steels in H3PO4 under flowing conditions at different temperatures. Corrosion Science. 53(4):1237-1246. https://doi.org/10.1016/j.corsci.2010.12.017S1237124653

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    SN1987A and the properties of neutrino burst

    Full text link
    We reanalyze the neutrino events from SN1987A in IMB and Kamiokande-II (KII) detectors, and compare them with the expectations from simple theoretical models of the neutrino emission. In both detectors the angular distributions are peaked in the forward direction, and the average cosines are 2 sigma above the expected values. Furthermore, the average energy in KII is low if compared with the expectations; but, as we show, the assumption that a few (probably one) events at KII have been caused by elastic scattering is not in contrast with the 'standard' picture of the collapse and yields a more satisfactory distributions in angle and (marginally) in energy. The observations give useful information on the astrophysical parameters of the collapse: in our evaluations, the mean energy of electron antineutrinos is =12-16 MeV, the total energy radiated around (2-3)*1.E53 erg, and there is a hint for a relatively large radiation of non-electronic neutrino species. These properties of the neutrino burst are not in disagreement with those suggested by the current theoretical paradigm, but the data leave wide space to non-standard pictures, especially when neutrino oscillations are included.Comment: 14 pages, 5 figure

    Search for leptophobic Z ' bosons decaying into four-lepton final states in proton-proton collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for black holes and other new phenomena in high-multiplicity final states in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe
    corecore