304 research outputs found

    Orthorhombic versus monoclinic symmetry of the charge-ordered state of NaV2O5

    Full text link
    High-resolution X-ray diffraction data show that the low-temperature superstructure of alpha-NaV2O5 has an F-centered orthorhombic 2a x 2b x 4c superlattice. A structure model is proposed, that is characterized by layers with zigzag charge order on all ladders and stacking disorder, such that the averaged structure has space group Fmm2. This model is in accordance with both X-ray scattering and NMR data. Variations in the stacking order and disorder offer an explanation for the recently observed devils staircase of the superlattice period along c.Comment: REVTEX, 4 pages including 2 figures, shortened, submitted to PR

    Search for Higgs bosons produced via vector-boson fusion and decaying into bottom quark pairs in √s =13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the bb ¯ decay of the Standard Model Higgs boson produced through vector-boson fusion is presented. Three mutually exclusive channels are considered: two all-hadronic channels and a photon-associated channel. Results are reported from the analysis of up to 30.6 fb −1 of pp data at s √ =13 TeV collected with the ATLAS detector at the LHC. The measured signal strength relative to the Standard Model prediction from the combined analysis is 2.5 +1.4 −1.3 for inclusive Higgs boson production and 3.0 +1.7 −1.6 for vector-boson fusion production only

    Measurement of jet fragmentation in Pb+Pb and pp collisions at √s NN =5.02 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of jet fragmentation functions in 0.49 nb −1 of Pb+Pb collisions and 25 pb −1 of pp collisions at √ sNN =5.02 TeV collected in 2015 with the ATLAS detector at the LHC. These measurements provide insight into the jet quenching process in the quark-gluon plasma created in the aftermath of ultra-relativistic collisions between two nuclei. The modifications to the jet fragmentation functions are quantified by dividing the measurements in Pb+Pb collisions by baseline measurements in pp collisions. This ratio is studied as a function of the transverse momentum of the jet, the jet rapidity, and the centrality of the collision. In both collision systems, the jet fragmentation functions are measured for jets with transverse momentum between 126 GeV and 398 GeV and with an absolute value of jet rapidity less than 2.1. An enhancement of particles carrying a small fraction of the jet momentum is observed, which increases with centrality and with increasing jet transverse momentum. Yields of particles carrying a very large fraction of the jet momentum are also observed to be enhanced. Between these two enhancements of the fragmentation functions a suppression of particles carrying an intermediate fraction of the jet momentum is observed in Pb+Pb collisions. A small dependence of the modifications on jet rapidity is observed

    Search for dark matter in events with a hadronically decaying vector boson and missing transverse momentum in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for dark matter (DM) particles produced in association with a hadronically decaying vector boson is performed using pp collision data at a centre-of-mass energy of √s=13 TeV corresponding to an integrated luminosity of 36.1 fb−1, recorded by the ATLAS detector at the Large Hadron Collider. This analysis improves on previous searches for processes with hadronic decays of W and Z bosons in association with large missing transverse momentum (mono-W/Z searches) due to the larger dataset and further optimization of the event selection and signal region definitions. In addition to the mono-W/Z search, the as yet unexplored hypothesis of a new vector boson Z′ produced in association with dark matter is considered (mono-Z′ search). No significant excess over the Standard Model prediction is observed. The results of the mono-W/Z search are interpreted in terms of limits on invisible Higgs boson decays into dark matter particles, constraints on the parameter space of the simplified vector-mediator model and generic upper limits on the visible cross sections for W/Z+DM production. The results of the mono-Z′ search are shown in the framework of several simplified-model scenarios involving DM production in association with the Z′ boson

    Search for pair production of heavy vector-like quarks decaying into high-pT W bosons and top quarks in the lepton-plus-jets final state in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search is presented for the pair production of heavy vector-like B quarks, primarily targeting B quark decays into a W boson and a top quark. The search is based on 36.1 fb −1 of pp collisions at √s = 13 TeV recorded in 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. Data are analysed in the lepton-plus-jets final state, characterised by a high-transverse-momentum isolated electron or muon, large missing transverse momentum, and multiple jets, of which at least one is b -tagged. No significant deviation from the Standard Model expectation is observed. The 95% confidence level lower limit on the B mass is 1350 GeV assuming a 100% branching ratio to Wt. In the SU(2) singlet scenario, the lower mass limit is 1170 GeV. This search is also sensitive to a heavy vector-like B quark decaying into other final states (Zb and Hb ) and thus mass limits on B production are set as a function of the decay branching ratios. The 100% branching ratio limits are found to be also applicable to heavy vector-like X production, with charge +5/3, that decay into Wt

    Search for lepton-flavor-violating decays of the Z boson into a τ lepton and a light lepton with the ATLAS detector

    Get PDF
    For abstract see published article

    Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb−1 of pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    A search for heavy neutral Higgs bosons and Z′ bosons is performed using a data sample corresponding to an integrated luminosity of 36.1 fb−1 from proton-proton collisions at √s=13 TeV recorded by the ATLAS detector at the LHC during 2015 and 2016. The heavy resonance is assumed to decay to τ+τ− with at least one tau lepton decaying to final states with hadrons and a neutrino. The search is performed in the mass range of 0.2-2.25 TeV for Higgs bosons and 0.2-4.0 TeV for Z′ bosons. The data are in good agreement with the background predicted by the Standard Model. The results are interpreted in benchmark scenarios. In the context of the hMSSM scenario, the data exclude tan β > 1.0 for mA= 0.25 TeV and tan β > 42 for mA=1.5 TeV at the 95% confidence level. For the Sequential Standard Model, ZSSM′ with mZ′< 2.42 TeV is excluded at 95% confidence level, while Z NU′ with mZ ′ < 2.25 TeV is excluded for the non-universal G(221) model that exhibits enhanced couplings to third-generation fermions

    Search for pair production of heavy vectorlike quarks decaying into hadronic final states in pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    A search is presented for the pair production of heavy vectorlike quarks, T¯T or B¯B, that decay into final states with jets and no reconstructed leptons. Jets in the final state are classified using a deep neural network as arising from hadronically decaying W/Z bosons, Higgs bosons, top quarks, or background. The analysis uses data from the ATLAS experiment corresponding to 36.1  fb−1 of proton-proton collisions with a center-of-mass energy of √s=13  TeV delivered by the Large Hadron Collider in 2015 and 2016. No significant deviation from the Standard Model expectation is observed. Results are interpreted assuming the vectorlike quarks decay into a Standard Model boson and a third-generation-quark, T→Wb,Ht,Zt or B→Wt,Hb,Zb, for a variety of branching ratios. At 95% confidence level, the observed (expected) lower limit on the vectorlike B -quark mass for a weak-isospin doublet (B, Y) is 950 (890) GeV, and the lower limits on the masses for the pure decays B→Hb and T→Ht, where these results are strongest, are 1010 (970) GeV and 1010 (1010) GeV, respectively

    Search for lepton-flavor violation in different-flavor, high-mass final states in pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    A search is performed for a heavy particle decaying into different-flavor, dilepton pairs (eμ, eτ or μτ), using 36.1  fb−1 of proton-proton collision data at √s=13  TeV collected in 2015–2016 by the ATLAS detector at the Large Hadron Collider. No excesses over the Standard Model predictions are observed. Bayesian lower limits at the 95% credibility level are placed on the mass of a Z′ boson, the mass of a supersymmetric τ-sneutrino, and on the threshold mass for quantum black-hole production. For the Z′ and sneutrino models, upper cross-section limits are converted to upper limits on couplings, which are compared with similar limits from low-energy experiments and which are more stringent for the eτ and μτ modes

    Measurements of b-jet tagging efficiency with the ATLAS detector using tt ¯ events at √s =13 TeV

    Get PDF
    The efficiency to identify jets containing b -hadrons (b -jets) is measured using a high purity sample of dileptonic top quark-antiquark pairs (tt ¯ ) selected from the 36.1 fb −1 of data collected by the ATLAS detector in 2015 and 2016 from proton-proton collisions produced by the Large Hadron Collider at a centre-of-mass energy s √ =13 TeV. Two methods are used to extract the efficiency from tt ¯ events, a combinatorial likelihood approach and a tag-and-probe method. A boosted decision tree, not using b -tagging information, is used to select events in which two b -jets are present, which reduces the dominant uncertainty in the modelling of the flavour of the jets. The efficiency is extracted for jets in a transverse momentum range from 20 to 300 GeV, with data-to-simulation scale factors calculated by comparing the efficiency measured using collision data to that predicted by the simulation. The two methods give compatible results, and achieve a similar level of precision, measuring data-to-simulation scale factors close to unity with uncertainties ranging from 2% to 12% depending on the jet transverse momentum
    corecore