115 research outputs found

    Interleukin-13 and Its Receptors in Idiopathic Interstitial Pneumonia: Clinical Implications for Lung Function

    Get PDF
    Idiopathic interstitial pneumonia (IIP) is characterized by varying degrees of interstitial fibrosis. IL-13 and IL-4 are strong inducers of tissue fibrosis, whereas IFN-γ has antifibrotic potential. However, the roles of these substances in IIP remain unknown. IL-13, IL-4, and IFN-γ were measured in the BAL fluid of 16 idiopathic pulmonary fibrosis (IPF) patients, 10 nonspecific interstitial pneumonia (NSIP) patients, and 8 normal controls. The expression of IL-13 and IL-13Rα1/α2 in lung tissues was analyzed using ELISA and immunohistochemistry. IL-13 levels were significantly higher in IPF patients than the others (P<0.05). IL-4 levels were higher in both IPF and NSIP patients than in normal controls (P<0.05), and IFN-γ levels were lower in NSIP patients than in normal controls (P=0.047). IL-13 levels correlated inversely with FVC% (r=-0.47, P=0.043) and DLCO% (r=-0.58, P=0.014) in IPF and NSIP patients. IL-13 was strongly expressed in the smooth muscle, bronchial epithelium, alveolar macrophages and endothelium of IPF patients. IL-13Rα1, rather than IL-13Rα2, was strongly expressed in the smooth muscle, bronchial epithelium, and endothelium of IPF patients. IL-13 and its receptors may contribute to the pathogenesis of fibrosis in IIP and appear to be related to the severity of the disease

    Effects of phosphodiesterase 4 inhibition on bleomycin-induced pulmonary fibrosis in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pulmonary fibrosis (PF) is a group of devastating and largely irreversible diseases. Phosphodiesterase (PDE) 4 is involved in the processes of remodeling and inflammation, which play key role in tissue fibrosis. The aim of the study was, therefore, to investigate the effect of PDE4 inhibition in experimental model of PF.</p> <p>Methods</p> <p>PF was induced in C57BL/6N mice by instillation of bleomycin. Pharmacological inhibition of PDE4 was achieved by using cilomilast, a selective PDE4 inhibitor. Changes in either lung inflammation or remodeling were evaluated at different stages of experimental PF. Lung inflammation was assessed by bronchoalveolar lavage fluid (BALF) differential cell count and reverse transcription quantitative polymerase chain reaction (RT-qPCR) for inflammatory cytokines. Changes in tissue remodeling were evaluated by pulmonary compliance measurement, quantified pathological examination, measurement of collagen deposition and RT-qPCR for late remodeling markers. Survival in all groups was analyzed as well.</p> <p>Results</p> <p>PDE4 inhibition significantly reduced the total number of alveolar inflammatory cells in BALF of mice with bleomycin-induced PF at early fibrosis stage (days 4 and 7). Number of macrophages and lymphocytes, but not neutrophils, was significantly reduced as well. Treatment decreased lung tumor necrosis factor (TNF)-α mRNA level and increased mRNA level of interleukin (IL)-6 but did not influence IL-1β. At later stage (days 14 and 24) cilomilast improved lung function, which was shown by increase in lung compliance. It also lowered fibrosis degree, as was shown by quantified pathological examination of Hematoxilin-Eosin stained lung sections. Cilomilast had no significant effect on the expression of late remodeling markers such as transforming growth factor (TGF)-β1 and collagen type Ia1 (COL(I)α1). However, it tended to restore the level of lung collagen, assessed by SIRCOL assay and Masson's trichrome staining, and to improve the overall survival.</p> <p>Conclusions</p> <p>Selective PDE4 inhibition suppresses early inflammatory stage and attenuates the late stage of experimental pulmonary fibrosis.</p

    Novel therapeutic approaches for pulmonary fibrosis

    Get PDF
    Pulmonary fibrosis represents the end stage of a number of heterogeneous conditions and is, to a greater or lesser degree, the hallmark of the interstitial lung diseases. It is characterized by the excessive deposition of extracellular matrix proteins within the pulmonary interstitium leading to the obliteration of functional alveolar units and in many cases, respiratory failure. While a small number of interstitial lung diseases have known aetiologies, most are idiopathic in nature, and of these, idiopathic pulmonary fibrosis is the most common and carries with it an appalling prognosis – median survival from the time of diagnosis is less than 3 years. This reflects the lack of any effective therapy to modify the course of the disease, which in turn is indicative of our incomplete understanding of the pathogenesis of this condition. Current prevailing hypotheses focus on dysregulated epithelial–mesenchymal interactions promoting a cycle of continued epithelial cell injury and fibroblast activation leading to progressive fibrosis. However, it is likely that multiple abnormalities in a myriad of biological pathways affecting inflammation and wound repair – including matrix regulation, epithelial reconstitution, the coagulation cascade, neovascularization and antioxidant pathways – modulate this defective crosstalk and promote fibrogenesis. This review aims to offer a pathogenetic rationale behind current therapies, briefly outlining previous and ongoing clinical trials, but will focus on recent and exciting advancements in our understanding of the pathogenesis of idiopathic pulmonary fibrosis, which may ultimately lead to the development of novel and effective therapeutic interventions for this devastating condition

    Eicosanoid control over antigen presenting cells in asthma

    Get PDF
    Asthma is a common lung disease affecting 300 million people worldwide. Allergic asthma is recognized as a prototypical Th2 disorder, orchestrated by an aberrant adaptive CD4+ T helper (Th2/Th17) cell immune response against airborne allergens, that leads to eosinophilic inflammation, reversible bronchoconstriction, and mucus overproduction. Other forms of asthma are controlled by an eosinophil-rich innate ILC2 response driven by epithelial damage, whereas in some patients with more neutrophilia, the disease is driven by Th17 cells. Dendritic cells (DCs) and macrophages are crucial regulators of type 2 immunity in asthma. Numerous lipid mediators including the eicosanoids prostaglandins and leukotrienes influence key functions of these cells, leading to either pro- or anti-inflammatory effects on disease outcome. In this review, we will discuss how eicosanoids affect the functions of DCs and macrophages in the asthmatic lung and how this leads to aberrant T cell differentiation that causes disease
    corecore