1,396 research outputs found

    Learning from Data to Optimize Control in Precision Farming

    Get PDF
    Precision farming is one way of many to meet a 70 percent increase in global demand for agricultural products on current agricultural land by 2050 at reduced need of fertilizers and efficient use of water resources. The catalyst for the emergence of precision farming has been satellite positioning and navigation followed by Internet-of-Things, generating vast information that can be used to optimize farming processes in real-time. Statistical tools from data mining, predictive modeling, and machine learning analyze pattern in historical data, to make predictions about future events as well as intelligent actions. This special issue presents the latest development in statistical inference, machine learning and optimum control for precision farming.Comment: Editorial of "Statistical Tools in Precision Farming", MDPI/Stat

    An artificial patient for pure-tone audiometry

    Get PDF
    Abstract The successful treatment of hearing loss depends on the individual practitioner's experience and skill. So far, there is no standard available to evaluate the practitioner's testing skills. To assess every practitioner equally, the paper proposes a first machine, dubbed artificial patient (AP), mimicking a real patient with hearing impairment operating in real time and real environment. Following this approach, we develop a multiple-input multiple-output auditory model that synthesizes various types of hearing loss as well as elements from psychoacoustics such as false response and reaction time. The model is then used to realize a hardware implementation, comprising acoustic and vibration sensors, sound cards, and a fanless personal computer. The AP returns a feedback signal to the practitioner upon perceiving a valid test tone at the hearing threshold analogous to a real patient. The AP is derived within a theoretical framework in contrast to many other solutions. The AP handles masked air-conduction and bone-conduction hearing levels in the range from 5 to 80 dB and from – 20 to 70 dB, respectively, both at 1 kHz. The frequency range is confined within 250 and 8000 Hz. The proposed approach sets a new quality standard for evaluating practitioners

    Performance of a SISO-SAGE Based Receiver for Coded CDMA

    Get PDF

    Assessing the Performance of a MIMO SDR Testbed with Dual Transceiver Implementation

    Get PDF
    Software Defined Radio testbeds are becoming increasingly used in the wireless networking community, given their feature of leaving wireless network designer full control of the PHY layer. On the other hand, SDR testbeds are formed of very complex software/hardware tools, in which implementation bugs are likely and difficult to identify. For this reason, assessment of the results provided by an SDR platform should be a fundamental, preliminary step in the performance evaluation process. In this paper, we provide a thorough assessment of the MIMONet SDR platform for network-level exploitation of MIMO technology. To assess the platform, we have used two different implementations of an OFDM transceiver: one based on Matlab, the other on the GNU Radio software. We have then crossvalidated performance by means of extensive measurements using the two alternative implementations. We have also designed and implemented a fine grained SNR and BER estimation methodology, that allowed us to carefully validate performance of the two software implementations against theoretical predictions. When collectively considered, the results of our measurements promote MIMONet as the first SDR testbed with carefully validated performance

    A Unified Message-Passing Algorithm for MIMO-SDMA in Software-defined Radio

    Get PDF
    This paper presents a novel software radio implementation for joint channel estimation, data decoding, and noise variance estimation in multiple-input multiple-output (MIMO) space division multiple access (SDMA). In contrast to many other iterative solutions, the proposed receiver is derived within the theoretical framework of a unified message-passing algorithm, combining belief propagation (BP) and the mean field approximation (MF) on the corresponding factor graph. The algorithm minimizes the region-based variational free energy in the system under appropriate conditions and, hence, converges to a fixpoint. As a use-case, we consider the high-rate packet-oriented IEEE 802.11n standard. Our receiver is implemented on a software-defined radio platform dubbed MIMONet, composed of a GNU radio software component and a universal software radio peripheral (USRP). The receiver was evaluated in real indoor environments. The results of our study clearly show that, once synchronization issues are properly addressed, the BP-MF receiver provides a substantial performance improvement compared to a conventional receiver also in real-world settings. Such improvement comes at the expense of an increase in running time that can be as high as 87. Therefore, the trade-off between communication performance and receiver complexity should be carefully evaluated in practical settings

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
    corecore