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ABSTRACT

We derive a multi-user receiver that performs joint data de-
tection and channel estimation (JDE) of DS-CDMA signals.
The proposed sub-optimal receiver is formulated within the
framework of the space-alternating generalized expectation-
maximization (SAGE) algorithm. The time-varying channel
is represented by discrete prolate spherical (DPS) sequences.
The resulting receiver iterates between MMSE based channel
estimation in the subspace spanned by the DPS sequences
and successive interference cancellation at significantly less
time complexity than previously proposed SAGE based JDE
schemes. The reduction is in the order of 200 for the inves-
tigated system parameters. Numerical examples show that
the proposed receiver works efficiently in a wide range of
velocities and system loads.

1. INTRODUCTION

The jointly optimum multiuser detector performs maximum
likelihood sequences decisions [1]. Its non-polynomial time
complexity in the number of users, however, prevents any
practical application. Iterative signal processing, in contrast,
combines computationally low-complex blocks that exchange
soft information in a very efficient way. Lively examples in
communications are iterative multiuser detection, iterative
(Turbo)-equalization, and iterative (Turbo)-decoding. Fo-
cusing on the first two issues, several heuristic iterative re-
ceivers, iterating between channel estimation and multiuser
detection, have been proposed in the past. An overview can
be found in [2].

The space-alternating generalized expectation-
maximization (SAGE) algorithm [3] is an iterative
method to approximate the maximum likelihood estimate of
a parameter when its direct computation is computationally
prohibitive. At the same time, the SAGE algorithm
exhibits the so-called monotonicity property that ensures
convergence to a fix-point of the likelihood function. A
near-far resistant and robust JDE scheme of time-varying
signals for DS-CDMA based on the SAGE algorithm is
investigated in [2, 4]. This paper addresses a low-complex
version of that receiver in order to make it implementable
on a digital signal processing device in a mobile terminal.

In mobile communication systems the time-selective fad-
ing process is highly oversampled. Time-limited snapshots
of the fading process with length of a data block span a
subspace with small dimension. The same subspace is also
spanned by index-limited discrete prolate spheroidal (DPS)
sequences [5]. The energy of the DPS sequences is time-
concentrated in an interval equal to the length of a data

block [6]. The band-limitation of the DPS sequences is cho-
sen according to the maximum support of the power spectral
density of the time-selective fading process. The subspace di-
mension for practical communication systems is in the order
of two to five only. This allows drastic complexity reduction
for time-varying channel estimation as we will show in the
sequel.

Contributions of the Paper

• We apply subspace-based channel estimation that utilizes
Slepian sequences in the iterative SAGE receiver.

• The design of the sequences only depends on the maxi-
mum relative velocity vmax and assumes a flat Doppler
spectrum. This design proves to be robust against mis-
matches in the second-order statistics of actual channel
realizations.

• We show that this approach reduces complexity consider-
ably compared to the time-domain implementation pre-
sented in [2], while achieving similar performance.

Notation

We denote a column vector by a and its i-th element with
a[i]. Equivalently, we denote a matrix by A and its (i, m)-
th element by [A]i,m. The transpose of A is given by AT,
its conjugate transpose by AH. A diagonal matrix with el-
ements a[i] is written as diag(a) and the Q × Q identity
matrix as IQ. The absolute value of a is denoted by |a| and
its complex conjugate by a∗. The largest (smallest) integer
lower (greater) or equal to a ∈ R is denoted by ⌊a⌋ (⌈a⌉).
The symbol ⊗ denotes the Kronecker product. The expecta-
tion operator is denoted by E{·}. The operator col{·} stacks
all elements in a column vector. We denote the set of all
integers by Z, the set of real numbers by R and the set of
complex numbers by C.

2. SYSTEM MODEL

We consider the uplink of a synchronous CDMA system
with K active users each having assigned long signature
waveforms sk,ℓ(t) ∈ R that are normalized to have unit en-

ergy on signaling interval ℓ, i.e.,
R (ℓ+1)TS

ℓTS

|sk,ℓ(t)|
2 dt = 1,

k = 1, . . . , K. Different users transmit equiprobable data se-
quences dk of length L over different time-varying frequency-
flat Rayleigh fading channels. The normalized frequency
shift caused by the time-varying channel is upper bounded
by the maximum normalized Doppler bandwidth

νDmax =
vmax

c0
fCTS (1)



with fC denoting the carrier frequency, vmax being the maxi-
mum relative speed between the mobile and the base-station
and c0 standing for the speed of light.

The complex baseband representation of the received sig-
nal, obtained by an omni-directional antenna, reads

r(t) =
K
X

k=1

L−1
X

ℓ=0

αk(t)dk[ℓ]sk(t − ℓTS) + w(t).

In the above expression dk[ℓ] ∈ {−1, +1} denotes the symbol
transmitted by the k-th user during the ℓ-th signaling inter-
val. The complex gain αk(t) characterizes the k-th user’s
flat fading channel. We model αk(t) as i.i.d. complex, circu-
larly symmetric, Gaussian random processes with variance
var{αk} = 1 and equal second-order statistics. Finally, w(t)
represents complex-valued white Gaussian noise with one
sided power spectral density N0.

Let the column vector z[ℓ] , col{z1[ℓ], . . . , zK [ℓ]} ∈ C
K

contain the output samples of K matched filters (MF) in
signaling interval ℓ corresponding to the sample instant (ℓ +
1)TS. It follows from (2) that

z[ℓ] , R[ℓ]diag(d[ℓ])a[ℓ] + n[ℓ]. (2)

In this expression, the matrix R[ℓ] ∈ R
K×K is of the form

R[ℓ] ,

0

B

@

1 . . . ρ1,K [ℓ]
...

. . .
...

ρK,1[ℓ] . . . 1

1

C

A
(3)

where

ρj,k[ℓ] ,

Z (ℓ+1)TS

ℓTS

sj,ℓ(t − ℓTS)sk,ℓ(t − ℓTS) dt

denotes the cross-correlation between the signature wave-
forms sj,ℓ(t) of user j and sk,ℓ(t) of user k in time interval ℓ.
The vector

d[ℓ] = col{d1[ℓ], . . . , dK [ℓ]} ∈ C
K

described the data symbols of the users and the vector

a[ℓ] = col{a1[ℓ], . . . , aK [ℓ]} ∈ C
K

contains the samples in signaling interval ℓ of the complex
channel gains ak[ℓ] = αk(ℓTS), ℓ = 0, . . . , L − 1. Finally,
n[ℓ] ∈ C

K is a complex zero-mean Gaussian random vector
with covariance matrix N0R[ℓ] [1]. Because of the above as-
sumptions, the channel of each user has the same covariance
function Ra[∆ℓ] = E{ak[ℓ]∗ak[ℓ + ∆ℓ]}, k = 1, . . . , K with
power spectral density

Sa(ν) =

∞
X

∆ℓ=−∞

Ra(∆ℓ) e−j2π∆ℓν

in the fundamental interval |ν| ≤ 1/2. For the sake of con-
venience, we collect the k-th user’s channel coefficients of a
single data block, ℓ ∈ IL, IL = {0, . . . , L − 1} in the vector

ak = col{ak[0], . . . , ak[L − 1]}.

Hence, the entries of the covariance matrix for ak read

[Σa ]ℓ,ℓ+∆ℓ = Ra[∆ℓ] ℓ = 0, . . . , L − 1 .

In [2,7] it was shown that channel estimation dominates
the computational complexity in the SAGE based JDE re-
ceiver. To reduce complexity, we consider a low dimensional
subspace-based approximation of the time-varying channel
ak. We project the vector ak onto D ≪ L orthonor-
mal basis vectors um = col{um[0], . . . , um[L − 1]} ∈ R ,
m = 0, . . . , D − 1:

ak ≈

D−1
X

m=0

gk,mum, (4)

where gk,m are the basis expansion coefficients. It was shown
in [5, 8] that index limited DPS sequences, subsequently re-
ferred to as Slepian basis functions, are ideally suited for
expansion of the time-varying channel vector ak. The DPS
sequences {um[ℓ]}, ℓ ∈ Z are band-limited to the interval
(−νDmax, νDmax) and have maximum energy concentration
within IL [6]. The m-th Slepian basis function um satisfies

Cum = λmum

where λm denotes its corresponding eigenvector and the el-
ements of the matrix C ∈ R

L×L are given by

[C ]i,j =
sin(2π(i − j)νDmax)

π(i − j)
, i, j ∈ IL.

Notice that C results when the Doppler spectrum of the
path weights is constant. This spectrum achieves maxi-
mum entropy among the families of Doppler spectra ban-
dlimited to (−νDmax, +νDmax). The eigenvalue spectrum
λm, m = 0, . . . , L− 1 has exponential decay with essentially
D dominant values [6]. In fact, the dimension D of the sub-
space is a function of the prevailing SINR in the channel
estimator, and can be lower bounded by [5,8]

D′ = ⌈2νDmaxL⌉ + 1.

Inserting the right-hand-side of (4) into (2), it follows for
the output signal of the MF bank

z[ℓ] = R[ℓ]D[ℓ]g + n[ℓ]. (5)

The short-cut D[ℓ] ∈ C
K×KD stands for D[ℓ] ,

[u0[ℓ], . . . , uD−1[ℓ]] ⊗ diag(d[ℓ]) and

g = col {g1,0, . . . , gK,0, . . . , g1,D−1, . . . , gK,D−1} ∈ C
KD

contains the basis expansion coefficients, subsequently re-
ferred as channel coefficients in the Slepian-domain. Their
covariance matrix reads

Σg =
1

2νDmax
diag([λ0, . . . , λD−1]) ⊗ IK .

The off-diagonal elements of Σg are zero since we assume no
knowledge about the second-order statistics of the channels
at the receive side (other than vmax).

3. THE SLEPIAN-DOMAIN SAGE-JDE
RECEIVER

The SAGE algorithm [3] is used to iteratively approx-

imate the maximum-likelihood (ML) estimate of d ,

col{d1, . . . , dK} ∈ {−1, +1}KL. At iteration i, the SAGE
algorithm only re-estimates the symbol vector dk of user
k = k[i] = i mod (K + 1) while the estimate of the vector
dk̄, containing the symbols of the other users, is not updated.
The SAGE algorithm relies on the concept of a (hypotheti-
cal) admissible hidden data X k with respect to dk to which



Table 1: Number of CMACs per user and bit for the Time-domain (TD) SAGE-JDE receiver [2].

Operation CMAC per user and information bit

a[0] [2, (6.24)]
L3

P

3(L−LP )
K2 +

L2

P

(L−LP )
K + 5LP

2(L−LP )
K +

L2

P

2(L−LP )
+ 5LP

2(L−LP )
− 1

3(L−LP )
K−1

E-step [2, (6.24)] s
3(L−LP )

K3L3 + s
L−LP

K2L2 + 5s
2(L−LP )

K2L + s
2(L−LP )

KL2 + 5s
2(L−LP )

KL − s
3(L−LP )

L

Total CTD
s

3(L−LP )
K3L3 + O(K2L2/(L − LP ))

Table 2: Number of CMACs per user and bit for the Slepian-domain (SD) SAGE-JDE receiver.

Operation CMAC per user and information bit

g[0] (15) 1
3(L−LP )

D3K2 + 6+LP

4(L−LP )
D2K + 1

4(L−LP )
D2 + 5LP −2

4(L−LP )
DK + 5LP +10

4(L−LP )
D − 1

3(L−LP )
K−1

a[0] (17) DL
L−LP

(aj [ℓ]ak[ℓ]∗)[i] (10) 3sD2L(K−1)
L−LP

E-step (11) s
3(L−LP )

D3K3 + s(6+L)
4(L−LP )

D2K2 + s
4(L−LP )

D2KL + s(5L−2)
4(L−LP )

DK2 + s(5K+10)
4(L−LP )

DK − s
L−LP

a[0] (4) sL
L−LP

DK

Total CSD
s

3(L−LP )
D3K3 + O(D3K2/(L − LP ))

the incomplete data z is related by a deterministic mapping
X k 7→ z(X k). Following a standard approach we incorpo-
rate the nuisance parameter g in the admissible data and
choose X k = {z, g}. Starting from an initial estimate d[0],
the SAGE algorithm iterates between two steps, the expec-
tation step (E-step), and the maximization step (M-step).
In the E-step the algorithm computes an estimate

Q
“

dk

˛

˛

˛d
[i]
”

, E

n

Λ
“

X k; dk, d
[i]

k̄

” ˛

˛

˛ z, d[i]
o

(6)

of the log-likelihood function Λ(·) for the observation X k

based on z and a current estimate d[i] of d. In the M-step
the algorithm updates dk as the value that maximizes this
estimated log-likelihood function. In the iterative process
the absolute value of the sequence of likelihood estimates
n

Λ
“

z|d[i]
”o∞

i=0
is non-decreasing. We start with the log-

likelihood function of d for the observation X k:

Λ (X k|d) = Λ (z, g|d) = Λ (z|g, d) + Λ (g|d) . (7)

The second summand in (7) does not depend on d and hence,
can be discarded. Using (5), the first summand in (7) be-
comes

Λ (z|g, d) ∝
L−1
X

ℓ=0

n

(z[ℓ] − R[ℓ]D[ℓ]g)H R[ℓ]−1

× (z[ℓ] − R[ℓ]D[ℓ]g)
o

. (8)

Further, inserting (7) and (8) in (6), it follows for the E-step
of the SAGE algorithm after some straightforward algebra

Q
“

dk|d
[i]
”

=

L−1
X

ℓ=0

dk[ℓ]ℜ
n“

ak[ℓ][i]
”∗

zk[ℓ]−

X

j 6=k

ρk,j [ℓ]dj [ℓ]
[i] (aj [ℓ]ak[ℓ]∗)

[i]
o

, (9)

where the estimated channel weights and their second mo-
ments read

ak[ℓ][i] ,

D−1
X

m=0

E

n

gk,m

˛

˛

˛z, d[i]
o

um[ℓ],

(aj [ℓ]ak[ℓ]∗)
[i]

,

D−1
X

m=0

D−1
X

n=0

E

n

gj,mg∗
k,n

˛

˛

˛z, d[i]
o

um[ℓ]un[ℓ]. (10)

The conditional distribution of g given z and assuming b[i]

is transmitted is Gaussian with conditional expectation [9]

g
[i]
k,m = E

n

gk,m

˛

˛

˛z, b[i]
o

=

"

N−1
0 Σ

[i]
g

L−1
X

ℓ=0

“

D[ℓ][i]
”H

z[ℓ]

#

mD+k

(11)

and covariance matrix

Σ
[i]
g , N0

 

N0IDK+

Σg

L−1
X

ℓ=0

“

D[ℓ][i]
”H

R[ℓ]D[ℓ][i]
!−1

Σg . (12)

From (11) and (12), the conditional expectation in (10) reads

E

n

gj,mg∗
k,n

˛

˛

˛ z, d[i]
o

= g
[i]
j,m

“

g
[i]
k,n

”∗

+
h

Σ
[i]
g

i

mD+j,nD+k
. (13)

In the so-called M-step of the SAGE algorithm the estimate
of dk is updated as the argument maximizing Q(dk|d

[i]) in
(9). Due to our particular system set-up, where symbols are
independent of each other, the resulting expression breaks
down to the following individual symbol updating algorithm

dk[ℓ][i+1] = sgn
n“

ak[ℓ][i]
”∗

zk[ℓ]−

X

j 6=k

ρk,jdj [ℓ]
[i] (aj [ℓ]ak[ℓ]∗)

[i]
o

. (14)



The operator sgn{·} denotes the signum of the argument.
Note that the bit estimates of one user only are updated in
the M-step. After all users have been processed once, a so-
called “stage” is completed. The SAGE-JDE scheme iterates
over several stages between E-step (9) and M-step (14) until
convergence is achieved.

4. IMPLEMENTATION ISSUES

4.1 Initialization

To initialize the Slepian-domain SAGE-JDE scheme, LP pi-
lot symbols are inserted in every user’s data sequence. Their
corresponding symbol positions P , {l0, . . . , lP−1} are regu-
larly distributed over the entire block of length L. The posi-
tions are computed as li = i∆ where ∆ = ⌈(L−1)/(LP −1)⌉
denotes the distance between two pilot symbols. The initial
estimate g[0] is the MMSE estimate of g given the observa-
tion z[ℓ], ℓ ∈ P and the pilot symbols d[ℓ], ℓ ∈ P :

g
[0]
k,m =

"

N−1
0 Σ

[0]
g

X

ℓ∈P

(D[ℓ])H z[ℓ]

#

mD+k

. (15)

The covariance matrix of g[0]

Σ
[0]
g = N0

 

N0IDK +Σg

X

ℓ∈P

(D[ℓ])H R[ℓ]D[ℓ]

!−1

Σg . (16)

Inserting (16) into (11), we obtain an initial guess for the
channel weights

a
[0]
k =

D−1
X

m=0

g
[0]
k,mum. (17)

The initial symbol estimate d[ℓ][0] is the conditional linear

MMSE estimate of d on the initial channel estimate a[0]

d[ℓ][0] = sgn
˘

ℜ{λ[ℓ]}
¯

(18)

where

λ[ℓ] ,

“

a[ℓ][0]
”H
„

R[ℓ]a[ℓ][0]
“

a[ℓ][0]
”H

+ N0IK

«−1

z[ℓ].

4.2 Sorting of the Users

Within each stage s, consisting of K iterations, all users are
processed in ascending order of their energy

Ek =

L−1
X

ℓ=0

˛

˛

˛ak[ℓ][i]
˛

˛

˛

2

.

4.3 Pseudo-Code of the Receiver

The pseudo-code in Fig. 1 shall ease understand the behavior
of the SAGE-JDE scheme.

4.4 Computational Complexity

In this subsection we compare the time complexity of the
SAGE-JDE derived in Slepian-domain with that one in time-
domain when the channel is time-varying [2]. In the fol-
lowing we determine the number of complex multiplications
and accumulations (CMACs) that are required per user and
bit. The matrix inversions are computed by means of an
LU-factorization with back-substitution [10]. The particu-
lar structures of diagonal and hermitian matrices have been
exploited in order to keep the number of computations at a
minimum.

% Place pilot symbols
1: - for each user, place LP pilot bits in

signaling interval l0, . . . , lP−1 in DP .
2: - all other entries in DP are set equal zero.

% Initial MMSE channel estimation

3: - compute matrix Σ
[0]
g (16)

4: - compute channel vector g[0] (15)
% Initial LMMSE data estimation

5: - compute data vector d[0] (18)
% Data detection and channel estimation

6: for s = 1 : number of stages
7: for i = 1 : K

% E-step

8: - compute covariance matrix Σ
[i]
g (12)

9: - compute g[i] (11)
% M-step - update user k = i mod K + 1

10: for ℓ = 1 : L
11: - compute dk[ℓ][i+1] (14)
12: end

% Update symbol matrix

13: d[i+1] =
n

d
[i+1]
k , d

[i]

k̄

o

14: end
15: end

Figure 1: Pseudocode of the SAGE-JDE scheme in
Slepian-domain.

Table 1 presents the time complexity per user and bit
CTD of the time-domain SAGE-JDE receiver for transmis-
sion over time-varying channels [2]. We have evaluated the
exact number of CMACs and list them in Table 1. Anal-
ogously, Table 2 lists the time complexity of the proposed
Slepian-domain SAGE-JDE receiver CSD. It can be readily
seen that the complexity ratio CTD/CSD is dominated by the
term L3/D3 for K → ∞. To illustrate the reduction in com-
putational complexity, let us consider the scenario L = 40,
P = 4, D = 5, K = 16, and s = 3 described in Table 3. Ex-
act evaluation of CTD/CSD gives 240. For K → ∞ it can be
seen that the proposed Slepian-domain SAGE-JDE scheme
is 512 times less complex than the time-domain SAGE-JDE
receiver.

5. NUMERICAL RESULTS

The general system settings are summarized in Table 3.
We assume Clarke’s model for the channel weights of each
user. Hence, the covariance function is given by Ra[n] =
J0(2πνDn). Here, J0{·} designates the Bessel function of the
first kind of zeroth order. The channel weights are gener-
ated via spectral filtering of a white random sequence. The
long signature sequences are randomly generated and their
individual chips are BPSK modulated. We assume a symbol
duration TS of 54µs. The Slepian sequences are designed for
a maximum velocity of vmax = 250 kmph. This corresponds
to a normalized Doppler frequency of 25 × 10−3.

In Fig. 2 we illustrate the bit-error-rate (BER) curves of
the proposed Slepian-domain SAGE receiver and the time-
domain SAGE receiver [2, Section 6.3]. To test the re-
ceiver performance versus speed we consider relative veloc-
ities v ∈ {12.5, 125, 250} kmph. The lowest curve is the
single-user BER performance. It indicates the bit error
rate that is achieved with one single user and assuming
that the receiver has access to the exact channel coefficients
a1[ℓ], ℓ = 0, . . . , L−1. The results show that the BER curves
of both the low-complexity SD-receiver and the TD-receiver
are very close. The deviation in case of v = 12.5 kmph is
largest due the fact that the sequences were designed for



Table 3: Simulation Parameters.

Parameter Value

Number of users K {8, 12, 16}
Block length L 40

Number of pilot symbols P 4
Spreading sequence long

Chip modulation BPSK
Spreading factor NC 16
Symbol modulation BPSK
Symbol duration TS 54 µs
Max. velocity vmax 250 kmph

Subspace dimension D 5
Max. Doppler bandwidth νDmax 25 × 10−3

User velocities v {12.5, 125, 250} kmph
Number of stages s 3

0 5 10 15 20 25 30
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SD, v=250 kmph
SD, v=125 kmph
SD, v=12.5 kmph
TD, v=250 kmph
TD, v=125 kmph
TD, v=12.5 kmph
SU−bound

Figure 2: BERs for different velocities and K = 12.

vmax = 250 kmph. Note that the TD-receiver utilizes full
knowledge of the second-order statistics of the channel while
the SD-receiver knows only vmax.

In Fig. 3 we illustrate the dependency of the BER on the
system load β , K/NC . The load β ranges in {0.5, 0.75, 1.0}.
The results indicate that the loss of the SD-receiver to the
TD-scheme is less than 1 dB.

6. CONCLUSIONS

We designed an iterative SAGE-receiver that performs chan-
nel estimation in the Slepian-subspace rather than in the
time-domain directly. This allows to tremendously reduce
the inherent complexity, mainly brought in by the channel
estimator. The observed reduction in numbers of complex
multiplications and accumulations (CMACs) is in the order
of several hundreds for practical system configurations. The
observed performance is very close to the time-domain based
implementation. Furthermore, the Slepian-SAGE does not
require precise second-order statistics of the actual channel
realizations, neither in the design of the sequences nor in the
channel estimator.
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