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Abstract: Precision farming is one way of many to meet a 55 percent increase in global demand
for agricultural products on current agricultural land by 2050 at reduced need of fertilizers and
efficient use of water resources. The catalyst for the emergence of precision farming has been satellite
positioning and navigation followed by Internet-of-Things, generating vast information that can
be used to optimize farming processes in real-time. Statistical tools from data mining, predictive
modeling, and machine learning analyze patterns in historical data, to make predictions about future
events as well as intelligent actions. This special issue presents the latest development in statistical
inference, machine learning, and optimum control for precision farming.
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1. Introduction

The world’s population is expected to be nearly 10 billion by 2050, corresponding to a 55
percent increase in global demand for agricultural production based on current trends. In 2011,
according to FAO, agriculture made use of 2710 km3 (70 percent) of all water withdrawn from aquifers,
stream and lakes, but this number masks large geographical discrepancies. Middle East, Northern
Africa, and Central Asia have already withdrawn most of the exploitable water with 80–90 percent
of that going to agriculture. Hence, rivers and aquifers are depleted beyond sustainable levels [1].
Shifting the focus to arable land, 1.6 billion hectares are arable worldwide. The total world land area
suitable for cropping is 4.4 billion corresponding to around 40 percent of world’s land. However,
in several regions, soil quality constraints affect more than half the cultivated land base, notably in
sub-Saharan Africa, Southern America, Southeast Asia, and Northern Europe [1]. When forests are
converted into farming land, the largest stores of carbon locked in those trees will be released to the
atmosphere, contributing to global warming on top of today’s level.

Clearly, crop production on current land needs to be increased through adopting new technologies.
To increase profits reduces waste and maintains environmental quality at the same time. Farmers are
supplied with decision support systems that propose the right dose/action at the right place and at
the right time [2,3]. The core piece of such decision support system is an agricultural model related
to either crop growth, epidemiology, or market development that optimizes a control function based
on probabilistic assessment of causal relationships [4]. Satellite telemetry tracking data along with
existing geo-referenced digital map as well as Internet-of-Things based sensor data act as input to the
model. Automated data processing systems, often located in the cloud, train the model. The trend goes
from manually trained to self-calibrating models that adapt to changes in the environment over time.
Smartphone applications have become a key interface in precision agriculture between the farmer
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and the cloud. These applications not only visualize the control parameters and suggest possible
actions but also return the farmers’ reaction (irrigation, sowing, fertilization, etc.) back to the cloud.
Fully automatized actions that go beyond human level performance while minimizing resources are
still subject to research.

2. Statistical Inference and Machine Learning

The key to effective experimentation in precision farming is blocking, replication,
and randomization [5]. To analyze and interpret the experimental results as well as to predict upcoming
data, tools from statistics are deployed. Probabilistic models approximate the complex dynamics of
the underlying process using statistical assumptions on the generation of sample data. Statistics draws
population inferences from data samples. Neither training nor test sets are necessary to infer the
parameters. The supervised machine learns from training data to build a statistical model that can be
used to make repeatable predictions. The unsupervised machine, in contrast, learns the model on its
own without external training data. With the development of Internet-of-Things, machine learning
applications for precision farming have been rapidly developing over the last years [6].

2.1. Low-Order Statistics

Random variables have a discrete or continuous probability distribution. Low-order statistics
denote the first and second moments of a sample from the distribution. The former and the second
correspond to the mean and the statistical auto- and cross-power of the random variables. Low order
statistics, however, require a very large number of samples to estimate with a reasonable level of
confidence. When the random variables are normal distributed, this now ranked data are often
used for ANalysis Of VAriance (ANOVA), comparing the ratio of within group variance and between
group variance, to assess systematic factors (bias) and random factors (covariance). The former
has statistical influence on the data set while the latter does not. For example, there is an average
weight variation within one kind of pumpkin, but there might be another average weight variation
among different pumpkin varieties. The Pearson correlation coefficient defines as ratio of covariance
to the product of individual variances measures linear correlation between two random variables.
For example, the Pearson correlation between evapotranspiration and precipitation is positive over the
southern/deforested but negative over the northern/forested Amazonia [7].

2.2. Regression

Multiple regression models characterize the relationship between a dependent target variable and
multiple weighted independent feature variables. The weights, also known as regression coefficients,
are an average functional relationship between target and features which might be linear or nonlinear.
For example, an exponential regression is adequate to model the relation between tree height and
leaf-area index of Prunus [8]. The least square fitting technique yields the model parameters. A probit
regression, in contrast, considers binary target variables with Gaussian distributed model noise and
possibly multiple weighted independent variables. The maximum likelihood technique is often
used to obtain the model parameters. Voting with binary outcome is a typical application of probit
regression. For example, Sevier and Lee used this method in [9] to predict the probability of Florida
citrus producers adopting precision agriculture technologies. Note that regression analysis is sensitive
to multicollinearity, arising whenever two or more independent variables used in a regression are
strongly correlated with each other. In this case, the weights become very sensitive to small changes in
the model.

2.3. Classification

Classification is a supervised learning problem like the above regression. Considering models
for solving classification problems, the classical Fisher linear discriminant analysis is a standard
multivariate technique both for dimension reduction and supervised classification. The data vectors
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are transformed into a low dimensional subspace that maximizes separation of class centroids. In many
applications, however, the linear boundaries do not adequately separate the classes. Roth and Steinhage
present in [10] a nonlinear generalization of discriminant analysis that uses the kernel trick to replace
dot products with an equivalent kernel function.

Sparse Kernel Machines evaluate the kernel function only at a subset of the training data points
to predict a new data point, making the computation time feasible [11]. Specifically, the support vector
machine (SVM) by Boser et al. in [12] discards all data points but the support vectors, once the model is
trained. The determination of the model parameters is a convex optimization problem so that any local
solution is also a global solution in contrast to many other algorithms. The SVM has become popular
for solving problems in classification, regression, and novelty detection. For example, Jheng et al.
predicted in [13] the rice yield in Taiwan by a SVM using training data from 1995–2015. The relevance
vector machine (RVM) [14] is a Bayesian sparse kernel technique that provides posterior probability
outputs in contrast to the SVM. At the same time, RVM based prediction models utilize dramatically
less basis functions than a comparable SVM. To name an example from remote sensing, the RVM
with plate spline kernel is able to spatially estimate chlorophyll from an unmanned aerial system at
low computational cost [15]. Finally, we want to point out the Informative Vector Machine (IVM),
constructing sparse Gaussian process classifiers by greedy forward selection with criteria based on
information theoretic principles. The IVM performs similar to the SVM by only a fraction of training
data. Roscher et al. use in [16] an incremental version of the IVM to classify hyperspectral image data
for various agricultural crops in Italy, Europe, and Indiana, USA.

2.4. Clustering

Clustering is an unsupervised process of partitioning a set of data (or objects) in a set of meaningful
sub-classes, called clusters. Clustering techniques can be categorized into (i) partitioning algorithms
constructing various partitions and then evaluate the result by some criterion (k-means, k-medoids,
CLARANS, ...); (ii) hierarchical algorithms creating a hierarchical decomposition of the set of objects
by some criterion (AGNES, BIRCH, CURE, DIANA, ...); (iii) density-based methods that are guided
by connectivity and density functions (DBSCAN, OPTICS, ...); (iv) grid-based methods that are
based on a multi-level granularity structure (STING, WaveCluster, CLIQUE, ...); and (v) model-based
clustering methods that find the best fit to a hypothetical model (Autoclass, Rock, EM-algorithm, ...).
Massive computing power makes it possible, for example, to mine a large amount of existing crop, soil,
and climatic data. Clustering the result based on districts with maximum wheat yield gives the optimal
range of best temperature, worst temperature, and rain fall [17]. To scale clustering algorithms with
the number of dimensions and the number of data items, attention has been drawn to a distributed
approach [18]. Nevertheless, the scaling problem is still a challenge for most of the above clustering
algorithms such as big data applications.

2.5. Artificial Neural Networks

An Artificial Neural Networks (ANNs) consist of many simple connected nodes dubbed neurons,
each deploying a real-valued nonlinear activation function. Input neurons are activated by data from
external sensors. Other neurons are activated by weighted edges from previously active neurons.
Feed-forward neural networks, forming a directed acyclic graph, process the sensed data without
memory. In contrast, the recurrent neural network (RNN) allows connections among neurons in
the same or previous layers. They have internal memory and their graph is directed with cycles.
When fed with environmental and historical dynamic information, this type of neural network is
well-suited to time series forecasting [19]. In the convolutional neural network (CNN), forward and
backward propagations perform convolutional operations. Usually, the edge weights are point
estimates based on stochastic gradient training. Bayesian Neural Networks model the uncertainty of
the estimated edge weights by interpreting them as maximum likelihood or maximum a posteriori
estimates. A comprehensive state-of-the-art overview of ANN is available in [20]. Notable examples
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in precision farming are the feedforward neural network by Adisa et al. in [21] for maize production
prediction. In this work, the feature space is spanned by the environmental parameters, potential
evapotranspiration, soil moisture, and land cultivated. Barbosa et al. deployed in [22] a CNN that
predicts the spatial yield map of corn fields in Illinois, Nebraska, and Kansas, USA. Here, satellite
images as well as environmental data span the feature space. In a third notable application, multi-layer
(deep) CNN have been applied in [23] to detect plant leaf disease based on 54,000 (large number)
training images. Finally, we want to point out the example in [24] where RNN has been used
for spatio-temporal prediction of leaf area index in rubber plantation. The feature space in the
experiment was spanned by the individual CCD images. The underlying theory of many neural
network architectures is still in research phase.

2.6. Bayesian Time-Series Forecasting

Bayesian time-series forecasting is another promising field of research in precision farming.
Within this framework, all sources of uncertainty are expressed by stochastic processes. The Bayes
Theorem turns the a priori probability and the distribution of the observed data, also known as
likelihood, into the posteriori distribution of the parameters for predictive inference. A partially
observed state-space model such as the Hidden Markov Model (for discrete states) or the Kalman filter
(for continuous states) are ideally suited to describe the dynamics of the process. A typical example in
agriculture research is price prediction of crops. In [25], a Kalman filter has been deployed to predict the
price time-series of rice. When the model parameters are unknown, the observation sequence and the
state sequence can be used to estimate them. The linear dynamic Bayesian network developed in [26]
does this by relating indicative parameters of crop development to environmental control parameters.
The expectation–maximization algorithm is used to track the states in the expectation step and to learn
the parameters of the Bayesian network in the maximization. At iterative convergence, the algorithm
provides a time-series predictor many time instants ahead. When the dynamics is nonlinear on top
of that, sequential Monte Carlo techniques often lead to accurate parameter predictions by sampling
from the posterior distribution on the expenses of computational complexity. In the special case of
sigmoid-type growth dynamics, a linear dynamic model leads to the exact predictor for the reciprocal
(non-linear) time-series of the parameter [27].

3. Closing the Loop

Thus, far, machines have mostly be used to learn from the observations with the goal to
predict future outcome given current conditions. Clearly with an increasing number of observations,
the machine becomes smarter over time, but it does not have control over the environmental conditions.
Currently, these are controlled by the agronomist’s experience. A more efficient approach is to let
agents make optimal actions subject to minimizing resources. The result is a close-loop precision
farming system where the model learns from data in the forward loop and controls actuators in
the backward loop, as outlined in [28]. Reinforcement learning, making smarter decisions over
time, has enjoyed a great success in several domains such as computer game, medical diagnosis,
and energy management. Bu and Wang build in [29] a smart agriculture IoT system based on deep
reinforcement learning that decides the amount of water needed to be irrigated by analyzing the
collected agricultural environment data. Though there had been great progress, the technology cannot
yet achieve the human-level performance in adaptation to dynamic environments and solving complex
tasks. Ergo, there is still a lot of space for research towards optimum precision farming. Table 1 lists
strengths and weaknesses of common statistical models and machine learning algorithms.
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Table 1. Comparison of common statistical models and machine learning algorithms.

Method Strengths Weaknesses

MANOVA

• Powerful test for finding truly
significant factors.

• Robust to Type I errors.

• Relation between independent grouping
variable and dependent variables
sometime ambiguous.

• Computationally complex.

Multiple
Regression

• Theory well understood.
• Good results are obtained with relatively

small data sets.
• Ability to determine impact of

independent variable on
dependent variable.

• Missing data erroneously changes
regression coefficients.

• Correlation does not necessarily
correspond to a causation.

• Sensitive to outliers.

Deep Neural
Networks

• Perform well on audio, image, text data.
• Architecture can be adapted to a number

of problems.

• Computationally intensive to train.
• Tuning hyper-parameters needs

expert knowledge.

Dynamic
Bayesian
Network

• Accurate prediction of
temporal behavior.

• Flexible adapts to
environmental changes.

• Underlying theory is well understood.

• Cannot handle real biological systems
with feedback loops (cycles).

• Initial guess of parameters is crucial
for convergence.

Support
Vector
Machine

• Memory efficient.
• Flexible (nonlinear) threshold

using Kernels.
• Convex optimization problem with

unique solution.

• Does not scale with data dimension.
• Sensitive to tuning the regularization

parameters (overfitting).
• Finding a proper kernel is often

cumbersome.

k-means
clustering fast, simple. Model order must be known in advance.

DBSCAN
clustering

• Model-order free.
• Scalable.
• Estimate is unbiased.

• Sensitive to choice of hyperparameters.
• Good results only for uniform densities.

Reinforcement
Q-Learning

• Computes most successful rewards even
when the environment is large.

• Model-free.
• Convergence to the optimum policy

is guaranteed.

• Computationally complex.
• Assumes that all of the states and all of

the actions are presentable as matrix.

4. Conclusions

Precision farming for current arable land is a promising approach to meet the vast global demand
for agricultural products on current land. Internet-of-Things provides vast real-time information
on crop related parameters, soil, and weather that feeds machine learning algorithms for better
crop productivity while protecting the environment. The ultimate goal is to maximize yield by
minimizing water consumption, usage of fertilizers, and amount of arable land in an automatic fashion.
Although there has been an evolution of research in this area, more knowledge is needed to close the
gap between current practice and optimum precision farming.
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