

C

Consiglio Nazionale delle Ricerche

Assessing the Performance of a MIMO SDR Testbed
with Dual Transceiver Implementation

V. Gardellin, A.Kocian, F. Martelli, P. Santi

IIT TR-02/2013

Technical report

Febbraio 2013

Iit

Istituto di Informatica e Telematica

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PUblication MAnagement

https://core.ac.uk/display/37831662?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Assessing the Performance of a MIMO SDR
Testbed with Dual Transceiver Implementation

Vanessa Gardellin, Alexander Kocian, Francesca Martelli, Paolo Santi
Institute for Informatics and Telematics

Italian National Research Council
Via G. Moruzzi 1, 56124 Pisa, Italy

Email: {vanessa.gardellin,alexander.kocian,francesca.martelli,paolo.santi}@iit.cnr.it

Abstract—Software Defined Radio testbeds are becoming in-
creasingly used in the wireless networking community, given their
feature of leaving wireless network designer full control of the
PHY layer. On the other hand, SDR testbeds are formed of very
complex software/hardware tools, in which implementation bugs
are likely and difficult to identify. For this reason, assessment
of the results provided by an SDR platform should be a
fundamental, preliminary step in the performance evaluation
process.

In this paper, we provide a thorough assessment of the
MIMONet SDR platform for network-level exploitation of MIMO
technology. To assess the platform, we have used two different
implementations of an OFDM transceiver: one based on Matlab,
the other on the GNU Radio software. We have then cross-
validated performance by means of extensive measurements using
the two alternative implementations. We have also designed
and implemented a fine grained SNR and BER estimation
methodology, that allowed us to carefully validate performance of
the two software implementations against theoretical predictions.
When collectively considered, the results of our measurements
promote MIMONet as the first SDR testbed with carefully
validated performance.

Index Terms—Software Defined Radios; MIMO testbed;
OFDM; performance assessment.

I. INTRODUCTION

The increasing use of wireless technologies to support com-
munication needs of individuals, companies, organizations,
communities, etc., and the consequent increasing wireless
traffic demand, will pose the problem of efficient bandwidth
utilization at the forefront. Advanced wireless communication
techniques such as cognitive radios [1] and multi-antenna
systems [2] are then expected to be increasingly used by
wireless network designers to improve bandwidth utilization.

A challenge to face when designing network-level ap-
proaches that make use of advanced communication tech-
nologies is their evaluation in a real environment. In fact,
cross-layer design (down to the PHY layer) is often the
key to fully exploit the potential of these technologies at
network-level. Thus, the wireless network designer should
be able to control and modify not only the upper layers of
the network architecture, but also the PHY layer. Typically,
commodity wireless networking cards do not allow access to
the PHY layer, since the low level functionalities realized at
the PHY layer such as DSP are implemented in hardware.
Thus, specially designed hardware/software platforms such as
software defined radios [3] must be used.

In software defined radios (SDRs), the entire transmitter
and receiver chains are implemented in software, while a
specialized hardware connected to the software modules is
used as the radio front-end. This way, the wireless network
designer gains full control of the PHY layer functionalities,
enabling implementation and testing of the designed cross-
layer, network-level protocols.

While SDR platforms give the designer the power of fully
controlling PHY layer design, they also expose the designer
to the risk of making programming errors. In fact, SDRs are
very complex hardware/software tools, often based on open
source frameworks developed by different programmers. In
such a situation, the risk of having bugs in the implementation
is very high, possibly leading to inaccurate results when,
say, a networking protocol is tested. For this reason, a SDR
testbed should be carefully assessed before it can be used for
further testing. To our best knowledge, however, the problem
of assessing performance of an SDR platform has not been
considered in the literature so far.

In this paper, we present a thorough performance assessment
of the MIMONet SDR platform for testing network-level
MIMO protocols we are currently developing. MIMONet
performance assessment is achieved by means of (i) cross-
validation and (ii) comparison of SISO vs. SIMO. As for (i),
MIMONet features two alternative software implementations
of a SISO OFDM system: the first implementation is based
on the open source GNU Radio framework [4], while the
second implementation is based on Matlab. Performance of
the two alternative implementations have been cross-validated
by building BER vs. SNR for the two approaches, and by
comparing them with theoretical predictions. As for (ii), we
have tested the performance of a SISO system and of different
SIMO systems, and compared the gain provided by SIMO vs.
SISO with theoretical predictions.

The specific technical contributions of this paper are:
– the realization of the first SDR testbed featuring two

alternative, fully fledged OFDM implementations, which
allow cross-validation of the obtained results;

– the implementation of a set of tracing tools for per-
formance evaluation, that allow estimating SNR values
observed on the single sub-carriers and building channel
profiles in both the time and the frequency domain;

– the design of a systematic assessment methodology, based

on building theoretical as well as measured BER vs. SNR
and PER vs. SNR curves. The BER curves are used to
define a notion of effective SNR [5] aimed at accounting
for a channel profile in the SNR definition.

We have verified that the performance provided by the
MIMONet testbed is in full agreement with theoretical pre-
dictions. Interestingly, our study has revealed an unexpected
inefficiency of the GNU Radio implementation, which system-
atically experiences lower effective SNR values than the cor-
responding Matlab implementation. Our tracing tools allowed
us to identify the cause of such inefficiency in the fact that
in GNU Radio central sub-carriers systematically experience
much lower SNR values that non-central sub-carriers, high-
lighting that current GNU Radio implementation only partially
compensates the direct current (DC) offset generated by the
Universal Software Radio Peripheral (USRP) units used as
radio front-end.

II. RELATED WORK

A number of SDR-based testbeds have been recently in-
troduced in the literature to test network-level protocols. In
terms of hardware, the most used SDR platforms are USRP
produced by Ettus ResearchTM [6], WARP [7] developed at
Rice University, and Microsoft Sora [8]. One of the first SDR
platforms for network MIMO systems is Hydra [9] developed
at UT Austin, which is based on USRP hardware and GNU
Radio software. Hydra provides a PHY layer implementation
based on IEEE 802.11n, and a MAC layer based on the
Distributed Coordination Function of IEEE 802.11. The Hydra
platform has been used in [10] to evaluate performance of a
rate adaptation technique for multi-antenna systems.

USRP hardware coupled with GNU Radio software is
also used in a series of papers by Katabi et al. [11], [12],
[13], where the performance of interference alignment and
cancellation [11], of a random access protocol for MIMO
networks [12], and of a rate adaptation technique for MIMO
networks [13] are tested. WARP-based platforms have instead
been used to test performance of beamforming in [14] and
[15]. Finally, a Sora-based platform has been used in [16]
to test performance of a spatial multiple access protocol for
wireless LANs.

Similarly to Hydra and to the testbeds used in [11], [12],
[13], the MIMONet platform is based on USRP hardware, and
uses GNU Radio as software platform. However, a distinguish-
ing feature of MIMONet is that we have also implemented an
alternative transceiver design based on Matlab, mirroring as
much as possible the transmitter/receiver chains implemented
in GNU Radio. To our best knowledge, MIMONet is the first
SDR testbed featuring such a dual transceiver implementation,
whose performance is carefully assessed by means of cross-
validation and comparison with theoretical predictions.

III. MIMONET ARCHITECTURE

In this section we describe the MIMONet testbed architec-
ture, starting with a description of the hardware platform in

Figure 1. A transmitter and a receiver node.

Section III-A, and then presenting the two alternative software
transceiver implementations in sections III-B and III-C.

A. Hardware

A transmitter and a receiver nodes of the MIMONet testbed
are illustrated in Fig. 1. Each node mainly includes: (i) a PC
equipped with an Intel R©CoreTM i7-2600 at 3.4GHz and 8 GB
of main memory; (ii) up to two USRPs model N210 by Ettus
ResearchTM [6]; (iii) a MIMO cable by Ettus ResearchTM

[6]; and (iv) two Gigabit Ethernet cables.
USRPs are a family of computer-hosted hardware designed

with GNU Radio. A single USRP unit consists of a mother-
board and a daughterboard, where the latter is the radio front-
end. The USRP N210 was chosen as the motherboard and the
XCVR2450 as the daughterboard due to their computational
capabilities, as well as their ability to operate in the frequency
ranges of [2.4; 2.5] GHz and [4.9; 5.85] GHz. In fact, those
are the frequencies used by the IEEE 802.11n standard for
multiple antenna wireless networks [17]. When a USRP is
used as a transmitter, the management software on the PC
produces a signal that is converted from digital to analog
(DAC) so that it can be suitable for the radio front-end for
subsequent transmission over the air. On the receiver side,
the radio front-end receives the signal which is converted
from analog to digital (ADC) and sent to the management
software in the PC. A USRP has an FPGA in it where it is
implemented a DC offset removal algorithm. This algorithm
is not perfect and the degree of imperfection changes with
center frequency. The DC offset is usually very narrowband
in nature, and for many types of modulations has negligible
effects. Moreover, a local oscillator (LO) leakage produced by
the analog mixer contributes to a small DC offset appearing in
the signals coming out of that mixer. For the reasons above,
recommendations given by Ettus ReasearchTM suggest to
leave the two central sub-carriers in an OFDM system unused.

A Gigabit Ethernet cable is used to connect PCs and USRPs,
while the connection between the two USRPs (in case of multi-
antenna configuration) is provided by a so-called MIMO cable.
The MIMO cable is designed to guarantee synchronization
between the two units, i.e., coherence in sampling clocks and
local oscillators, which is essential for implementation of any
MIMO technique. A MIMO cable can be used in shared or
dual modes. We choose the shared Ethernet mode where one
USRP, called master, is connected to the Ethernet cable and
the other USRP, called slave, receive clock reference, time
reference and data from the master over the MIMO cable.
This method differs from the dual Ethernet mode, where both
USRPs are connected to the PC through an Ethernet cable,

Figure 2. GNU Radio transmit chain Figure 3. GNU Radio receiver chain

and no data are communicated over the MIMO cable. The
rationale behind our choice is an easier implementation and
synchronization of data to transmit.

B. GNU Radio Implementation

GNU Radio is an open source software framework devel-
oped to implement Software Defined Radios (SDR). Given
its scalability, its flexibility in setting the signal processing
components, and its wide user base, GNU Radio is adopted as
one of the two software platforms for transceiver implemen-
tation in MIMONet. Functionalities already implemented in
GNU Radio, and that we use as given, are: (i) the Orthogonal
Frequency Division Multiplexing (OFDM) mechanism where
a transmitted/received signal is split in a subset of inde-
pendently modulated signals distributed on orthogonal sub-
carriers; (ii) synchronization and packet detection; (iii) several
modulation schemes, among which the binary phase-shift
keying (BPSK), quadrature PSK (QPSK) and 8PSK considered
in this study.

We have added and enhanced several features of GNU Radio
in order to have an SDR framework as close as possible to
an IEEE 802.11n node [17], the major contribution being
the forward error correction (FEC) module. The used FEC
is based on convolutional encoding and Viterbi decoding as
suggested in IEEE 802.11n standard [17]. The encoding is
an industry-standard generator polynomials (g0 = 133 and
g1 = 171) of rate R = 1/2. FEC is computed on the packet
payload and on its cyclic redundancy check (CRC), namely the
entire packet except the header; the header cannot be encoded
because the information contained in it is used to reconstruct
the encoded packet.

In the following, we described the GNU Radio software
architecture highlighting the transmitter and receiver chains.
The main blocks of the transmission chain are shown in Fig. 2:
(i) an application that generates packets, (ii) an OFDM mapper
that produces as many OFDM symbols as needed in order
to hold a full packet according to the modulation scheme
used, (iii) a preamble adder that inserts pre-modulated known
symbol before each packet in order to perform synchronization
and to estimate the communication channel at the receiver,
(iv) a pilot adder that occupies 30 subcarriers in each OFDM
symbol (pilots are used at the receiver to correct phase
rotation), (v) an Inverse Fast Fourier Transform (IFFT) to
convert symbols from frequency domain to time domain, (vi) a
cyclic prefix adder that copies a portion of symbols located at

the end of the OFDM symbol, at the beginning of the same
symbol, and finally, (vii) a scale factor that normalizes the
signal power of symbols and it is required by the hardware.

Figure 3 shows the blocks that build the receiver chain.
The main block is the OFDM demodulator which performs
synchronization on the received data, demodulates symbols
into bits and packs bits into packets. The synchronization stage
is the most complex because it performs: (i) frame detection,
(ii) Schmidl and Cox preamble correlation [18], (iii) cyclic
prefix removal, (iv) Fast Fourier Transformation (FFT), and,
(v) sub-carriers equalization.

Schmidl and Cox preamble correlation is performed to ob-
tain time synchronization and fine frequency offset correction
(see next section). Sub-carrier equalization is performed using
the least square estimation technique based on the received
preamble and the known symbols in order to remove the
distortion introduced by the communication channel.

C. Matlab

To benchmark the GNU-based transceiver and cross-validate
performance, a second software platform has been used.
For the reasons detailed below, we chose the platform
MATLAB

R©
/Simulink

R©
:

+ Matlab is optimized for vector/matrix based operations
(loops are time-consuming);

+ Matlab is very good at generating plots;
+ knowledge on how to program Matlab is available at

major institutions;
+ professional technical support;
+ large community of users that share numerical codes;
+ Simulink provides a graphical wrapper of Matlab.

On the other hand, we are aware of Matlab limitations and
cons, including:

- license fee;
- processing speed comparable with other programming

languages (e.g., C++ used in GNU Radio) only if the
Parallel-computing feature is used;

- do not support the USRP MIMO cable; synchronization
with external clock required for realizing multi-antenna
systems.

The latter limitation in particular constrained our current
Matlab implementation to the SISO configuration.

The Matlab/Simulink-based transmitter and receiver are
depicted in Fig. 4 and Fig. 5, respectively.

Figure 4. Matlab transmitter chain.

Figure 5. Matlab receiver chain.

In the source-coder, the i.i.d. information bit sequence
b ∈ {0, 1}Nb is encoded at rate R, and mapped into the data
sequence d ∈ {−1,+1}Nd , Nd = Nb/R, Nb/R mod Nd =
0. The code vector d is interleaved (pseudo-randomly) and
partitioned into OFDM symbols to which Np = 30 BPSK
modulated pilot symbols are added. The resulting data vec-
tors are processed by the IFFT matrix F−1 ∈ CN×N , N
mod Nd = 0 and fed into the permutation matrix Πt, to
add a cyclic prefix of length Ncp. A packet is formed of
one preamble (upper branch in Fig.4) and L OFDM symbols
(lower branch in Fig. 4). The preamble, which is essential for
the receiver to synchronize on the data stream in a coarse
fashion, consists of two equal halves in the time domain
i.e., every second tone is occupied only in the frequency
domain. To improve SNR at the receiver, the resulting signal
is upsampled by a factor Q = 4 and sent to the transmitter.

In the receiving USRP, the signal is downconverted,
lowpass-filtered, and sampled. The resulting sequence {r} ∈
C is forwarded to the Matlab/Simulink platform.

1) Acquisition: The first module in the receiver chain, pro-
vides coarse synchronization (acquisition). Since the receiver
does not know time offset or frequency offset, estimation is
required. Assume the channel is non-dispersive. Then, the
time offset can be modeled as a (single) delay in the channel
response δ(m− θ) with the integer arrival time θ. Moreover,
the local oscillators in the transmitter and receiver cause a
frequency offset ε of the subcarriers. This frequency offset
can be modeled as multiplicative distortion in the time domain
ej2πεm/N . The received signal then reads

rm = d(m− θ)ej2πεm/N + n(m) ,

where n(m) is complex additive white Gaussian noise.
As the preamble contains two equal halves, its cross-

correlation at delay index τ is given by [18]

P(τ) =

N/2−1∑
m=0

r∗τ+mrτ+m+N/2;

and its energy can be computed as

R(τ) =

N/2−1∑
m=0

|rτ+m+N/2|2.

The resulting (normalized) timing metric

S(τ) =
|P(τ)|2

R(τ)2

has a plateau, centered around timing offset τ = 0. A plateau
is considered as successfully detected if S(τ) is larger than a
predefined threshold η = 0.8.

2) Tracking: We want to find an estimate jointly for θ and
ε, given the observation r in the time domain. Under the
assumption that r is a jointly Gaussian vector, it can be shown
[19] that the likelihood function for (θ, ε) is given by

log p(r|θ, ε) = |γ(θ)| cos(2πε+ ∠γ(θ))− Φ(θ) (1)

Here, ∠ denotes the argument of the complex number. More-
over,

γ(m) ,
m+Ncp−1∑
k=m

r(k)r∗(k +N)

where Ncp is the length of the cyclic prefix and,

Φ ,
1

2

m+Ncp−1∑
k=m

|r(k)|2 + |r(k +N)|2 .

We want to maximize the likelihood function in (1) with
respect to ε and θ, yielding

θ̂ML = arg max
θ
{|γ(θ)| − Φ(θ)}

and

ε̂ML(θ) = − 1

2π
∠γ(θ) + I.

Notice that the integer frequency offset I cannot be resolved
at this step.

3) Integer Offset and Phase Offset: Assuming perfect time-
offset compensation and frequency-offset compensation up to
the integer part I , we can use the pilot symbols in each
OFDM interval to retrieve integer offset and phase offset [20].
Maximizing the likelihood function of r given I and phase-
offset φ in the frequency domain, leaves

Î = arg max
I
|dNp [I]HR|, φ̂ = ∠(dNp [Î]R).

Here, R denotes the Fourier transform of r.
Having synchronized, the resulting signal is hard demod-

ulated and fed into a Viterbi decoder to reconstruct the data
bits.

IV. BER ANALYSIS

In this section, we provide an analytical expression for
the bit-error-performance of OFDM over real communication
channels.

In the communication system, Nb source bits are encoded
and (randomly) interleaved into Nd code bits, i.e. rate R =
Nb/Nd, modulated by symbols from a modulation alphabet
of size M . The random interleaver prevents burst errors. This
information bit-stream is transmitted over a packet containing
L OFDM symbols, each having N sub-carriers. Hence, one
packet carries LN log2(M) code bits and LN log2(M)Nb/Nd
information bits, respectively. Perfect synchronization is as-
sumed throughout the derivations.

A. Single-Carrier Modulation

To get started, let us assume the number of sub-carriers
in each OFDM symbol is equal one. Then, the bit-error
probability of maximum-likelihood sequence decoder, Pε can
be upper bounded by [21]

Pε ≤
∫ +∞

γb=−∞

∞∑
d=dfree

βdP2(d, γb)p(γb) dγb. (2)

where P2(d, γb) is the pairwise-error-probability, i.e., the prob-
ability that the decoded sequence at the receiver differs from
the transmitted one by Hamming distance of d bits at a given
per-bit SNR γb; βd indicates the number of information bit
errors in selecting an incorrect path that merges with the all-
zero path at some node in the trellis; and dfree is the free dis-
tance of the code. Finally, p(γb) denotes the probability density
function of the observed SNR, which has been obtained from
measurements in our case. For hard-decision decoding, the
pairwise-error-probability is [22]

P2(d, γb) =

d∑
r=(d+1)/2

(
d

r

)
Pb(γb)

r (1− Pb(γb))(d−r) , (3a)

P2(d, γb) =

d∑
r=d/2+1

(
d

r

)
Pb(γb)

r (1− Pb(γb))(d−r)

+
1

2

(
d

d/2

)
Pb(γb)

(d/2) (1− Pb(γb))(d/2) (3b)

for odd and even values of d, respectively, where Pb(γb)
denotes the probability of a bit error for the binary symmetric
channel with a SNR of γb.

Under the assumption of BPSK modulation, bit error prob-
abilities can be approximated as follows [23]:

Pb(γb) ≈ Q

(√
2γb

k

n

)
where Q(·) is the tail probability of the standard normal
distribution. For 8-PSK modulation, we have [23]:

Pb(γb) ≈
2

3
Q

(√
3γb

k

n

(
1− cosπ

4

))
.

B. Multi-Carrier Modulation

The bit-error analysis for single-carrier modulation is valid
also for the multi-carrier setting, as long as the memory of the
communication channel is less than the length of the cyclic
prefix. Under this assumption, the cyclic prefix prevents inter-
symbol interference. Moreover, when the channel is quasi-
static, i.e., the Doppler shift is negligible w.r.t. to the sub-
carrier spacing, there is negligible inter-carrier interference.
Under these assumptions, each sub-carrier fades indepen-
dently, and the average bit-error-probability yields

Pε =
1

N

N∑
i=1

Pε[i]. (4)

Here, Pε[i] denotes the bit-error-probability for carrier i,
derived in Eq. (2).

V. SUB-CARRIER SNR ESTIMATION

A. SNR computations

In our OFDM setting, the FFT size is 512, the number
of used sub-carriers (namely, occupied tones) is 200 and the
cyclic prefix Ncp = 128. As suggested by GNU Radio team
and Ettus support, the two central sub-carriers are left empty,
so actually the number of sub-carriers used is N = 198. For
each sub-carrier i, we compute the average (symbol) SNR,
denoted γs,i, as follows. Since SNR is evaluated by means of
noise variance estimation (see below), we have first computed
by numerical evaluation the minimum number of samples
#min of a normally distributed random variable N (noise)
which must be observed to obtain an accurate estimate of
the variance of N . Clearly, #min depends on the variance
of the observed variable N , with higher #min values needed
for higher variances of N . Considering that we expect to
operate our system in a regime where an SNR of at least
0dB is achieved, we have made the worst-case assumption
of a variance for N resulting in an SNR of 0dB. Under
this assumption, #min turned out to be around 100 samples.
Since in our setting one sample corresponds to one OFDM
symbol, we have defined a number of OFDM symbols used
for estimating SNR values close to 100. For instance, with
BPSK modulation we estimate SNR every 11 packets, since
every packet is composed of 9 OFDM symbols, and we then
use 99 samples to estimate SNR.

In Table I we report the number of OFDM symbols per
packet when packet payload is equal to 100 bytes, the number
of packets used for computing one SNR value, and the total
numbers of packets transmitted in one experiment run, with
respect to the modulation.

Modulation OFDM Packets to Transmitted
symbols (L) compute SNR packets

BPSK 9 11 10500
QPSK 5 25 21000
8PSK 3 33 35000

Table I
NUMBER OF OFDM SYMBOLS PER PACKET, NUMBER OF PACKETS USED

TO COMPUTE SNR, AND TOTAL NUMBER OF TRANSMITTED PACKETS FOR
DIFFERENT MODULATIONS

By definition, in a channel i, the SNR is given by

γi =
εs|hi|2

N0
=

1

var(n)

The symbol SNR is computed by estimating the noise
variance around the constellation points and normalized to the
received signal power, namely

γs =
1

var(n)R

where R is the coding rate (in our case 1/2). The SNR per bit
is given by

γb =
γs

log2(M)

where M is the modulation used.
To build the profile of our channel, SNR values are divided

into bins: each bin is 0.5dB wide and the range considered
is [-2,30] (i.e 65 bins, B = 65 in the following), where all
values less than −2dB (greater than 30dB) are grouped in the
first (last) bin.

For each sub-carrier, every time a new SNR value is
estimated, it is put in the proper bin. At the end of each
experiment run, we count the occurrences in each bin for all
sub-carriers, and their probabilities are computed. For each
subcarrier i and for each bin j, we compute the probability of
occurrences pi,γj as

pi,γj =
#(γ in bini,j)

#(γ per subcarrier i)

Then, we compute also the average SNR value observed in
each sub-carrier as

γi =

B∑
j=1

γipi,γj .

B. Effective SNR

The notion of effective SNR has been introduced in [5]
and also considered in [24]. It is defined as the SNR value
that would give the same bit error performance on a narrow-
band channel. In other words, the SNR obtained by simply
averaging the SNR values of all sub-carriers (for instance,
computed on a per-packet basis) is not representative of the
actual goodness of the channel because it does not take into
account the possible occurrence of weaker carriers caused by
frequency selective fading. Ideally, the measured average SNR
value matches the effective SNR only in case of a perfectly
flat channel.

To compute the effective SNR, we need to use an analytical
function f that, given an SNR value, returns the expected BER.
By reversing this function, it is then possible to compute the
effective SNR (SNReff) given the average SNR (SNRavg)
as SNReff = f−1(f(SNRavg)).

In [24], the authors use as function f simply the uncoded
upper bound which holds only in case of AWGN channel with
uncoded transmissions, i.e., the standard normal CDF (in case

of BPSK modulation we have f(γs) = Q(
√

2γs), where γs is
the symbol SNR).

We have modified such a definition to take into account both
encoding and the channel effect, as described in the following.
First, at the end of each experiment run (namely, for each
channel realization), we take all SNR values, and for each
carrier n we compute γi as described in the previous section.

Then, each bin γi,j is associated with a theoretical BER
estimate, Pεγi,j , obtained from the coded approximation
BERcoded computed as detailed in Section IV:

Pεγi,j = BERcoded(γi,j) .

Finally, these BER values are weighted with their probabil-
ity of occurrence, and we get an approximated BER value for
subcarrier i:

Pεappr,i =

B∑
j=1

Pεγi,j pγi,j .

We repeat this procedure for all sub-carriers, and finally we
obtain an approximated BER value for the specific channel
profile resulting from our measurements:

Pεappr =
1

N

N∑
i=1

Pεappr,i . (5)

The BER value computed in equation (5) is then coupled
with the average SNR observed across all sub-carriers in the
experiment run, which is given by

γavg =
1

N

N∑
i=1

γi .

So, for each channel realization (experiment run), we gen-
erate a pair (γavg, Pεappr). By repeating experiment runs with
different transmitter and receiver parameters of the USRPs
for the same channel (positions of transmitter and receiver
unchanged), we can thus generate an approximation of the
performance that could be reached with the specific channel
at hand. We call such a curve effective BER, Pεeff . More
specifically, since Pεeff is formed of a discrete set of points,
we considered a fitting curve P ′εeff as the function f needed to
compute the effective SNR. We can then use the reverse func-
tion f−1 to compute the effective SNR value corresponding
to any observed average SNR value.

VI. PERFORMANCE ASSESSMENT: MATLAB VS. GNU
In this section, we compare Matlab and GNU Radio im-

plementations in terms of SNR performance achieved. In our
measurement campaign, we considered two different scenar-
ios: line-of-sight (LOS) and non-line-of-sight (NLOS), both
in an indoor office environment. In the LOS scenario, the
transmitter and receiver nodes are located in the same room,
3 meters apart and one in front of the other; in the NLOS
scenario, the two nodes are located in two different rooms, 7
meters apart, and between them there are walls of bricks, steel
and wood. Transmitter and receiver parameters of the USRPs
are varied to obtain measures with different SNR values.

A. Setup

In both implementations, the parameters at the transmiiter
and receiver were set as specified in Table II.

Parameter value@TX value@RX
Center frequency (Hz) 2.415e9 2.415e9

Local Oscillator offset (Hz) 0 0
Gain (dB) < 0..35 > < 0..80 >

Sample Rate (Hz) 200e3 200e3

Table II
USRP SETTINGS AT THE TX AND RX SITE

Other parameters are: (i) payload packet size is set to
100 (GNURadio and Matlab), 500 (GNU Radio) or 1000
(GNU Radio) bytes; (ii) coding rate R = 1/2 (iii) generator
polynomial G = (171, 133)8 (according to IEEE 802.11n
standard); (iv) FFT size 512 and cyclic-prefix length 128;
(v) BPSK, QPSK and 8PSK modulation.

B. Comparison

In Figures 6 and 7 we show the semi-analytical BER
estimation curve obtained taking into consideration the spe-
cific profiles of our LOS and NLOS channels, as described
in Section V-B. The figures also report the BER vs. SNR
curves obtained with GNU Radio and Matlab implementations.
Notice that the floor effect in the measured curves is due
to the fact that, with the number of transmitted packets in
a single experiment run, we cannot reliably measure BER
values below 10−3. As it is evident from the figure, the Matlab
implementation achieves better BER values for same SNR
as compared to GNU Radio. This is most likely due to the
fact that with GNU Radio implementation central sub-carriers
systematically experience relatively lower SNR values. This
effect can be seen in Figure 8, reporting the SNR profile in
the frequency domain for a specific channel realization: the
central sub-carrier experiences a close to 5dB lower value
than average SNR. As a result of this, the effective SNR
of that specific channel realization is 8.4dB, more than 1dB
lower than the average SNR of the profile. On the other hand,
with Matlab we do not have such effect, as shown in Figure
9. However, Matlab implementation suffers a slope in the
SNR profile, likely caused by the fact that pilots for phase
correction are grouped at the beginning of the occupied tones.
This effect is however less detrimental than the considerable
SNR drop for central sub-carriers experienced by GNU Radio,
as witnessed by the relatively higher effective SNR value of
the Matlab implementation (10.4dB instead of 8.4dB) for a
comparable average SNR value of the profile. The different
behavior of Matlab and GNU Radio implementations in the
frequency domain is well appreciable in the three-dimensional
plots reported in Figures 10 and 11.

VII. PERFORMANCE ASSESSMENT: SISO VS. SIMO

In this section we present the results of the comparison
between SISO and SIMO performance with GNU Radio
implementation. As explained in Section III-C, Matlab does
not support the MIMO cable used to synchronize two USRP

 0.0001

 0.001

 0.01

 0.1

 1

 0 5 10 15 20 25 30

BE
R

SNR (dB)

GNU Radio
Semi-Analytical Approximation

Matlab

Figure 6. Semi-analytical BER approximation in LOS configuration and
measured BERs for Matlab and GNU Radio implementations.

 0.0001

 0.001

 0.01

 0.1

 1

 0 5 10 15 20 25 30

BE
R

SNR (dB)

GNU Radio
Semi-Analytical Approximation

Matlab

Figure 7. Semi-analytical BER approximation in NLOS configuration and
measured BERs for Matlab and GNU Radio implementations.

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 50 100 150 200

S
N

R
 s

u
b
c
a
rr

ie
r

(d
B

)

Subcarrier ID

SNR Profile

Average SNR

Effective SNR

Figure 8. GNU Radio SNR profile in a LOS channel realization.

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 50 100 150 200

S
N

R
 s

u
b
c
a
rr

ie
r

(d
B

)

Subcarrier ID

SNR Profile

Average SNR

Effective SNR

Figure 9. Matlab SNR profile in a LOS channel realization.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

<0 <1 <2 <3 <4 <5 <6 <7 <8 <9 <10 <11 <12 <13

F
re

q
u

e
n
c
y
 o

f
o

c
c
u
re

n
c
e

SNR (dB)

SISO ASC EGC MRC

(a) BPSK LOS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

<0 <1 <2 <3 <4 <5 <6 <7 <8 <9 <10 <11 <12 <13

F
re

q
u

e
n
c
y
 o

f
o

c
c
u
re

n
c
e

SNR (dB)

SISO ASC EGC MRC

(b) 8PSK LOS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

<0 <1 <2 <3 <4 <5 <6 <7 <8 <9 <10 <11 <12 <13

F
re

q
u

e
n
c
y
 o

f
o
c
c
u

re
n
c
e

SNR (dB)

SISO ASC EGC MRC

(c) BPSK NLOS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

<0 <1 <2 <3 <4 <5 <6 <7 <8 <9 <10 <11 <12 <13

F
re

q
u

e
n
c
y
 o

f
o
c
c
u

re
n
c
e

SNR (dB)

SISO ASC EGC MRC

(d) 8PSK NLOS

Figure 12. LOS vs. NLOS

50

100

150

−2 0 2 4 6 8 10 12 14 16 18

0

0.1

0.2

0.3

0.4

Sub−carrier ID

SNR (dB)

F
re

q
u
e
n
c
y
 o

f
o

c
c
u
rr

e
n
c
e

Figure 10. GNU Radio 3D profile in the channel realization corresponding
to the SNR profile in Figure 8.

units, so we could not perform experiments with Matlab in
SIMO configuration.

Figure 12 shows the comparison of the SNR probability
mass function observed in the LOS and NLOS scenarios with
two modulations (BPSK and 8PSK), in both SISO and SIMO
configuration. The SIMO configuration uses antenna selection
(ASC), equal gain combining (EGC), or maximum ratio com-
bining (MRC) at the receiver. Transmitter and receiver gains
are chosen is such a way that the resulting average SNR is
about 9dB in both LOS and NLOS configuration.

It is interesting to observe that the SNR profile is more
concentrated around the average value in the LOS scenario
with both modulation schemes, as compared to the NLOS

50

100

150

−2 0 2 4 6 8 10 12 14 16 18

0

0.1

0.2

0.3

0.4

Sub−carrier ID

SNR (dB)

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
rr

e
n
c
e

Figure 11. Matlab 3D profile in the channel realization corresponding to the
SNR profile in Figure 9.

scenario. This is in accordance with expectations, given the
relatively more considerable multipath effect in NLOS condi-
tions. Furthermore, it is interesting to observe that the bene-
ficial effect of receiver diversity techniques becomes evident
in NLOS conditions. Again, this is in accordance with ex-
pectations, since receiver diversity techniques are expected to
yield negligible benefit when the two antennas observe highly
correlated channels (LOS conditions), and a noticeable benefit
when the two antennas observe uncorrelated channels (NLOS
conditions). It is also interesting to observe that the beneficial
effect of receiver diversity techniques is more evident for
higher order modulation schemes, again in accordance with
theoretical predictions. Finally, MRC provides the best perfor-

 0.0001

 0.001

 0.01

 0.1

 1

-2 0 2 4 6 8 10

B
E

R

SNR (dB)

SISO

MRC

Figure 13. SISO vs. MRC in terms of bit error rate (BER).

 0

 0.2

 0.4

 0.6

 0.8

 1

-2 0 2 4 6 8 10

P
E

R

SNR (dB)

SISO 100 bytes

MRC 100 bytes

SISO 500 bytes

MRC 500 bytes

SISO 1000 bytes

MRC 1000 bytes

Figure 14. SISO vs. MRC in terms of packet error rate (PER) when the
number of bytes per packet is 100, 500 and 1000.

mance among receiver diversity techniques (probability mass
function shifted towards higher values), again in accordance
with theoretical predictions.

Figure 13 shows the BER vs. SNR curve for SISO and
MRC in the NLOS scenario. MRC provides a benefit vs.
SISO of 1-2dB at intermediate SNR regimes, well within the
theoretical upper/lower bounds of 3dB and 0dB for perfectly
uncorrelated and perfectly correlated channels, respectively.
Finally, Figure 14 shows the PER vs. SNR curve for SISO
and MRC in the NLOS scenario with different packet sizes.
The results reported in the figure show that MRC clearly
outperforms SISO, especially with relatively larger packet
sizes.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented the MIMONet testbed
featuring a dual software OFDM transceiver implementation
operating on the same hardware. This dual implementation
has achieved, for the first time to our best knowledge, a cross
validation of the two implementations. Furthermore, we have
presented the design and realization of a fine grained SNR
and BER estimation methodology, that allowed us to carefully
validate performance of the two software implementations
against theoretical predictions.

The results of our study showed that, while both implemen-
tations in general behave according to theoretical predictions,
Matlab implementation yields consistently lower BER values
for comparable SNR ranges than those provided by GNU
Radio. This is likely due to the DC offset effect, which is
only partially solved in GNU Radio.

As future work, we want to address the DC offset problem
experienced in the GNU Radio implementation enhancing the

receiver design in such a way that the DC component is moved
out of the band-of-interest. Furthermore, we are currently
working on adding external clock support to MIMONet, so that
MIMO and distributed MIMO techniques can be implemented
using both software environments.

REFERENCES

[1] I.F. Akyildiz, W.Y. Lee, M.C. Vuran, and S. Mohanty. A Survey on
Spectrum Management in Cognitive Radio Networks. IEEE Communi-
cations Magazine, (4):40–48, 2008.

[2] A. Sibille, C. Oestges, and A. Zanella. MIMO: From Theory to
Implementation. Academic Press, 2010.

[3] M. Dillinger, K. Madani, and N. Alonistioti. Software Defined Radio:
Architectures, Systems and Functions. John Wiley & Sons, 2003.

[4] GNURadio. http://gnuradio.org/.
[5] S. Nanda and K.M. Rege. Frame Error Rates for Convolutional Codes

on Fading Channels and the Concept of Effective Eb/No. IEEE Trans.
on Vehicular Technology, 47(4):1245–1250, 1998.

[6] EttusResearch. http://www.ettus.com/.
[7] WARP. http://warp.rice.edu.
[8] Microsoft Research. http://research.microsoft.com/en-us/projects/sora/.
[9] K. Mandke, S.-H. Choi, G. Kim, R. Grant, R. C. Daniels, W. Kim,

R. W. Jr. Heath, and S. M. Nettles. Early Results on Hydra: A Flexible
MAC/PHY Multihop Testbed. 22–25 Apr., Dublin, Ireland 2007.

[10] W. Kim, O. Khan, K.T. Truong, S.H. Choi, R. Grant, H.K. Wright,
K. Mandke, R.C. Daniels, R.W. Heath, and S.M. Nettles. An experi-
mental evaluation of rate adaptation for multi-antenna systems. In IEEE
Conference on Computer Communications (INFOCOM), pages 2313–
2321, 19–25 Apr., Rio De Janeiro, Brazil, 2009.

[11] S. Gollakota, S. D. Perli, and D Katabi. Interference Alignment and
Cancellation. In Proc. ACM SIGCOMM, pages 159–170, 2009.

[12] K. C. Lin, S. Gollakota, and D Katabi. Random Access Heterogeneous
MIMO Networks. In Proc. ACM SIGCOMM, pages 146–157, 2011.

[13] W.L. Shen, Y.C. Tung, K.C. Lee, K.C. Lin, S. Gollakota, D. Katabi, and
M.S Chen. Rate Adaptation for 802.11 Multiuser MIMO Networks. In
Proc. ACM Mobicom, 2012.

[14] H. Yu, L. Zhong, A. Subharwal, and D. Kao. Beamforming on Mobile
Devices: A First Study. In Proc. ACM Mobicom, 2011.

[15] E. Aryafar, N. Anand, T. Salonidis, and E. Knightly. Design and
Experimental Evaluation of Multi-User Beamforming in Wireless LANs.
In Proc. ACM Mobicom, 2010.

[16] K. Tan, H. Liu, J. Fang, W. Wang, J. Zhang, M. Chen, and G. M. Voelker.
SAM: Enabling Practical Spatial Multiple Access in Wireless LAN. In
Proc. ACM Mobicom, 2009.

[17] 802.11-2012 - Wireless lan medium access control (mac) and physical
layer (phy) specifications, March 2012.

[18] T. M. Schmidl and D. C. Cox. Robust frequency and timing synchroniza-
tion for OFDM. IEEE Transactions on Communications, 45(12):1613–
1621, 1997.

[19] J. van de Beek et al. ML Estimation of Time and Frequency Offset in
OFDM Systems. IEEE Transactions on Si, 45:1800–1805, 1997.

[20] J.Lee, H-L.Lou, and D. Toumpakaris. Joint Maximum Likelihood
Estimation of Integer Carrier Frequency Offset and Channel in OFDM
Systems. In Proc. of the IEEE ICC 2006, 2006.

[21] J. G. Proakis. Digital Communications. 3. edition, 1995.
[22] A. Viterbi. Convolutional Codes and Their Performance in Commu-

nication Systems. IEEE Transactions on Communications Technology,
19:751–772, October 1971.

[23] L. Messerschmitt. Digital Communications. Kluwer Academic Publish-
ers, 3. edition, 1988.

[24] D. Halperin, W. Hu, A. Sheth, and D. Wetherall. Predictable 802.11
Packet Delivery from Wireless Channel Measurements. In Proc. ACM
SIGCOMM, pages 159–170, 2010.

[25] http://www.mathworks.com/.

	facsimile cover_TR.pdf
	Consiglio Nazionale delle Ricerche
	Iit

